Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 162424 by mnjuly1970 last updated on 29/Dec/21

       calculate          Ω = Σ_(n=1) ^∞  (( (−1)^( n) n)/(3^( n)  (2n −1 ))) =?          − Inspired from Sir Ghaderi′s post−

$$ \\ $$$$\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(−\mathrm{1}\right)^{\:{n}} {n}}{\mathrm{3}^{\:{n}} \:\left(\mathrm{2}{n}\:−\mathrm{1}\:\right)}\:=?\:\:\:\: \\ $$$$\:\:\:\:−\:\mathrm{I}{nspired}\:{from}\:{Sir}\:\mathrm{G}{haderi}'{s}\:{post}− \\ $$

Answered by Ar Brandon last updated on 29/Dec/21

Ω=Σ_(n=1) ^∞ (((−1)^n n)/(3^n (2n−1)))=(1/2)Σ_(n=1) ^∞ (−(1/3))^n +(1/2)Σ_(n=1) ^∞ (−(1/3))^n (1/(2n−1))      =−(1/8)+(1/2)Σ_(n=1) ^∞ (−(1/3))^n ∫_0 ^1 x^(2n−2) dx=−(1/8)+(1/2)∫_0 ^1 (1/x^2 )Σ_(n=1) ^∞ (−(x^2 /3))^n dx      =−(1/8)−(1/2)∫_0 ^1 (1/x^2 )∙((x^2 /3)/(1+(x^2 /3)))dx=−(1/8)−(1/2)∫_0 ^1 (1/(x^2 +3))dx      =−(1/8)−[(1/(2(√3)))arctan((x/( (√3))))]_0 ^1 =−(1/8)−(π/(12(√3)))

$$\Omega=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {n}}{\mathrm{3}^{{n}} \left(\mathrm{2}{n}−\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} +\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}−\mathrm{2}} {dx}=−\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)^{{n}} {dx} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} }\centerdot\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{3}}}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}}{dx}=−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{3}}{dx} \\ $$$$\:\:\:\:=−\frac{\mathrm{1}}{\mathrm{8}}−\left[\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\mathrm{arctan}\left(\frac{{x}}{\:\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\pi}{\mathrm{12}\sqrt{\mathrm{3}}} \\ $$

Commented by mnjuly1970 last updated on 29/Dec/21

    thank you so much sir brandon

$$\:\:\:\:{thank}\:{you}\:{so}\:{much}\:{sir}\:{brandon} \\ $$

Commented by Ar Brandon last updated on 29/Dec/21

My pleasure, Sir !

$$\mathrm{My}\:\mathrm{pleasure},\:\mathrm{Sir}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com