Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 1625 by 112358 last updated on 27/Aug/15

y(x)=(1/(x−a))∫_a ^x (√(t+(√(t+(√(t+(√(t+(√(t+...))))))))))dt  x≠a, a>0,y(x)>0.  Find  y(2a).

$${y}\left({x}\right)=\frac{\mathrm{1}}{{x}−{a}}\int_{{a}} ^{{x}} \sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+...}}}}}{dt} \\ $$ $${x}\neq{a},\:{a}>\mathrm{0},{y}\left({x}\right)>\mathrm{0}. \\ $$ $${Find}\:\:{y}\left(\mathrm{2}{a}\right). \\ $$

Answered by Rasheed Soomro last updated on 28/Aug/15

y(x)=(1/(x−a))∫_a ^( x) ( (√(t+(√(t+(√(t+(√(t+(√(t+...)))))))))) )dt  Let   (√(t+(√(t+(√(t+(√(t+(√(t+...))))))))))=u  Squaring both sides:            t+(√(t+(√(t+(√(t+(√(t+...))))))))=u^2           t+u=u^(2   ) ⇒  u^2 −u−t=0           u=((1±(√(1+4t)))/2)  y(x)=(1/(x−a)) ∫_a ^( x) (((1±(√(1+4t)))/2) )dt            =(1/(2(x−a)))∫_a ^( x) (1±(√(1+4t)))dt           =(1/(2(x−a)))[t±(1/6)(1+4t)^(3/2)  ]_a ^x    =(1/(2(x−a)))([x±((√((1+4x)^3 ))/6)]−[a±((√((1+4a)^3 ))/6)])  =(1/(2(x−a)))×((6(x−a)±(√((1+4x)^3 )) ∓(√((1+4a)^3 )) )/6)  =((6(x−a)±((√((1+4x)^3 )) −(√((1+4a)^3 )) ))/(12(x−a)))  y(x)=(1/2)±(((√((1+4x)^3 )) −(√((1+4a)^3 )))/(12(x−a)))  y(2a)=(1/2)±(((√((1+4(2a))^3 )) −(√((1+4a)^3 )))/(12((2a)−a)))             =(1/2)±(((√((1+8a)^3 )) −(√((1+4a)^3 )))/(12a))

$${y}\left({x}\right)=\frac{\mathrm{1}}{{x}−{a}}\int_{{a}} ^{\:{x}} \left(\:\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+...}}}}}\:\right){dt} \\ $$ $${Let}\:\:\:\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+...}}}}}={u} \\ $$ $${Squaring}\:{both}\:{sides}: \\ $$ $$\:\:\:\:\:\:\:\:\:\:{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+\sqrt{{t}+...}}}}={u}^{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:{t}+{u}={u}^{\mathrm{2}\:\:\:} \Rightarrow\:\:{u}^{\mathrm{2}} −{u}−{t}=\mathrm{0} \\ $$ $$\:\:\:\:\:\:\:\:\:{u}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{t}}}{\mathrm{2}} \\ $$ $${y}\left({x}\right)=\frac{\mathrm{1}}{{x}−{a}}\:\int_{{a}} ^{\:{x}} \left(\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{t}}}{\mathrm{2}}\:\right){dt} \\ $$ $$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\left({x}−{a}\right)}\int_{{a}} ^{\:{x}} \left(\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{t}}\right){dt} \\ $$ $$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}\left({x}−{a}\right)}\left[{t}\pm\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}+\mathrm{4}{t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:\right]_{{a}} ^{{x}} \\ $$ $$\:=\frac{\mathrm{1}}{\mathrm{2}\left({x}−{a}\right)}\left(\left[{x}\pm\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }}{\mathrm{6}}\right]−\left[{a}\pm\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{6}}\right]\right) \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}\left({x}−{a}\right)}×\frac{\mathrm{6}\left({x}−{a}\right)\pm\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }\:\mp\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }\:}{\mathrm{6}} \\ $$ $$=\frac{\mathrm{6}\left({x}−{a}\right)\pm\left(\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }\:−\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }\:\right)}{\mathrm{12}\left({x}−{a}\right)} \\ $$ $${y}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }\:−\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{12}\left({x}−{a}\right)} \\ $$ $${y}\left(\mathrm{2}{a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}\left(\mathrm{2}{a}\right)\right)^{\mathrm{3}} }\:−\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{12}\left(\left(\mathrm{2}{a}\right)−{a}\right)} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\left(\mathrm{1}+\mathrm{8}{a}\right)^{\mathrm{3}} }\:−\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{12}{a}} \\ $$

Commented by123456 last updated on 28/Aug/15

∫_a ^x 1±(√(1+4t))dt=∫_a ^x dt±∫_a ^x (√(1+4t))dt  ∫_a ^x dt=x−a  ∫_a ^x (√(1+4t))dt  u=1+4t⇒du=4dt  t=a⇒u=1+4a  t=x⇒u=1+4x  ∫_a ^x (√(1+4t))dt=(1/4)∫_(1+4a) ^(1+4x) (√u)du=[((1/4)/(3/2))(√u^3 )]_(1+4a) ^(1+4x)                        =(((√((1+4x)^3 ))−(√((1+4a)^3 )))/6)  ∫_a ^x 1±(√(1+4t))dt=x−a±(((√((1+4x)^3 ))−(√((1+4a)^3 )))/6)

$$\underset{{a}} {\overset{{x}} {\int}}\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{t}}{dt}=\underset{{a}} {\overset{{x}} {\int}}{dt}\pm\underset{{a}} {\overset{{x}} {\int}}\sqrt{\mathrm{1}+\mathrm{4}{t}}{dt} \\ $$ $$\underset{{a}} {\overset{{x}} {\int}}{dt}={x}−{a} \\ $$ $$\underset{{a}} {\overset{{x}} {\int}}\sqrt{\mathrm{1}+\mathrm{4}{t}}{dt} \\ $$ $${u}=\mathrm{1}+\mathrm{4}{t}\Rightarrow{du}=\mathrm{4}{dt} \\ $$ $${t}={a}\Rightarrow{u}=\mathrm{1}+\mathrm{4}{a} \\ $$ $${t}={x}\Rightarrow{u}=\mathrm{1}+\mathrm{4}{x} \\ $$ $$\underset{{a}} {\overset{{x}} {\int}}\sqrt{\mathrm{1}+\mathrm{4}{t}}{dt}=\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{1}+\mathrm{4}{a}} {\overset{\mathrm{1}+\mathrm{4}{x}} {\int}}\sqrt{{u}}{du}=\left[\frac{\mathrm{1}/\mathrm{4}}{\mathrm{3}/\mathrm{2}}\sqrt{{u}^{\mathrm{3}} }\right]_{\mathrm{1}+\mathrm{4}{a}} ^{\mathrm{1}+\mathrm{4}{x}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }−\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{6}} \\ $$ $$\underset{{a}} {\overset{{x}} {\int}}\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{t}}{dt}={x}−{a}\pm\frac{\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }−\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{6}} \\ $$

Commented by123456 last updated on 28/Aug/15

y(x)=(1/(2(x−a)))×((6(x−a)±(√((1+4x)^3 ))∓(√((1+4a)^3 )))/6)

$${y}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\left({x}−{a}\right)}×\frac{\mathrm{6}\left({x}−{a}\right)\pm\sqrt{\left(\mathrm{1}+\mathrm{4}{x}\right)^{\mathrm{3}} }\mp\sqrt{\left(\mathrm{1}+\mathrm{4}{a}\right)^{\mathrm{3}} }}{\mathrm{6}} \\ $$

Commented byRasheed Soomro last updated on 28/Aug/15

Thanks to mention my calculation mistake.I am going to  correct it.

$$\boldsymbol{\mathrm{Thanks}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{mention}}\:\boldsymbol{\mathrm{my}}\:\boldsymbol{\mathrm{calculation}}\:\boldsymbol{\mathrm{mistake}}.\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{am}}\:\boldsymbol{\mathrm{going}}\:\boldsymbol{\mathrm{to}} \\ $$ $$\boldsymbol{\mathrm{correct}}\:\boldsymbol{\mathrm{it}}. \\ $$

Commented by123456 last updated on 28/Aug/15

lim_(x→a)  y(x) is like [(d/dx)∫f(x)dx]_(x=a)  :)  lim_(x→a) ((∫_a ^x f(x)dx)/(x−a))=lim_(x→a) ((F(x)−F(a))/(x−a))=f(a)

$$\left.\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{y}\left({x}\right)\:\mathrm{is}\:\mathrm{like}\:\left[\frac{\mathrm{d}}{\mathrm{d}{x}}\int{f}\left({x}\right){dx}\right]_{{x}={a}} \::\right) \\ $$ $$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\underset{{a}} {\overset{{x}} {\int}}{f}\left({x}\right){dx}}{{x}−{a}}=\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{F}\left({x}\right)−\mathrm{F}\left({a}\right)}{{x}−{a}}={f}\left({a}\right) \\ $$

Commented by112358 last updated on 29/Aug/15

I created this question having the  formula for the average value  of a function in mind:                  y_(avg) =(1/(b−a))∫_a ^b f(x)dx .                  y_(avg) =((F(b)−F(a))/(b−a))    (∗)  (∗) resembles the relation given  by the mean value theorem which  states that ∃c∈[a,b] such that            (d/dx)f(x)∣_(x=c) =((f(a)−f(b))/(b−a))  given that f(x) is continuous   ∀x∈[a,b] and differentiable  ∀x∈(a,b).

$${I}\:{created}\:{this}\:{question}\:{having}\:{the} \\ $$ $${formula}\:{for}\:{the}\:{average}\:{value} \\ $$ $${of}\:{a}\:{function}\:{in}\:{mind}: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}_{{avg}} =\frac{\mathrm{1}}{{b}−{a}}\int_{{a}} ^{{b}} {f}\left({x}\right){dx}\:. \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}_{{avg}} =\frac{{F}\left({b}\right)−{F}\left({a}\right)}{{b}−{a}}\:\:\:\:\left(\ast\right) \\ $$ $$\left(\ast\right)\:{resembles}\:{the}\:{relation}\:{given} \\ $$ $${by}\:{the}\:{mean}\:{value}\:{theorem}\:{which} \\ $$ $${states}\:{that}\:\exists{c}\in\left[{a},{b}\right]\:{such}\:{that}\: \\ $$ $$\:\:\:\:\:\:\:\:\:\frac{{d}}{{dx}}{f}\left({x}\right)\mid_{{x}={c}} =\frac{{f}\left({a}\right)−{f}\left({b}\right)}{{b}−{a}} \\ $$ $${given}\:{that}\:{f}\left({x}\right)\:{is}\:{continuous}\: \\ $$ $$\forall{x}\in\left[{a},{b}\right]\:{and}\:{differentiable} \\ $$ $$\forall{x}\in\left({a},{b}\right).\: \\ $$ $$ \\ $$ $$ \\ $$

Commented by123456 last updated on 29/Aug/15

or mean value theorem for integrails  if f is continuous and integrable into [a,b]  them ∃ξ∈[a,b]  ∫_a ^b f(x)dx=f(ξ)(b−a)  so for some ξ∈[a,b]  y_(avg) =(1/(b−a))∫_a ^b f(x)dx=f(ξ)

$$\mathrm{or}\:\mathrm{mean}\:\mathrm{value}\:\mathrm{theorem}\:\mathrm{for}\:\mathrm{integrails} \\ $$ $$\mathrm{if}\:{f}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{integrable}\:\mathrm{into}\:\left[{a},{b}\right] \\ $$ $$\mathrm{them}\:\exists\xi\in\left[{a},{b}\right] \\ $$ $$\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}={f}\left(\xi\right)\left({b}−{a}\right) \\ $$ $$\mathrm{so}\:\mathrm{for}\:\mathrm{some}\:\xi\in\left[{a},{b}\right] \\ $$ $${y}_{{avg}} =\frac{\mathrm{1}}{{b}−{a}}\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}={f}\left(\xi\right) \\ $$

Commented by112358 last updated on 29/Aug/15

Nice. Thanks!

$${Nice}.\:{Thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com