Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162584 by SANOGO last updated on 30/Dec/21

prove that  ppcm(a,b)×pgcd(a,b)=∣ab∣

$${prove}\:{that} \\ $$$${ppcm}\left({a},{b}\right)×{pgcd}\left({a},{b}\right)=\mid{ab}\mid \\ $$

Answered by mr W last updated on 30/Dec/21

p_k =prime numbers  m_k ,h_k ≥0  a=Π_(k=1) ^n p_k ^m_k    b=Π_(k=1) ^n p_k ^h_k    gcd(a,b)=Π_(k=1) ^n p_k ^(min(m_k ,h_k ))   lcm(a,b)=Π_(k=1) ^n p_k ^(max(m_k ,h_k ))   gcd(a,b)×lcm(a,b)=Π_(k=1) ^n p_k ^(min(m_k ,h_k )+max(m_k ,h_k ))   gcd(a,b)×lcm(a,b)=Π_(k=1) ^n p_k ^(m_k +h_k )   gcd(a,b)×lcm(a,b)=(Π_(k=1) ^n p_k ^m_k  )(Π_(k=1) ^n p_k ^h_k  )  ⇒gcd(a,b)×lcm(a,b)=a×b

$${p}_{{k}} ={prime}\:{numbers} \\ $$$${m}_{{k}} ,{h}_{{k}} \geqslant\mathrm{0} \\ $$$${a}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{m}_{{k}} } \\ $$$${b}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{h}_{{k}} } \\ $$$${gcd}\left({a},{b}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{min}\left({m}_{{k}} ,{h}_{{k}} \right)} \\ $$$${lcm}\left({a},{b}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{max}\left({m}_{{k}} ,{h}_{{k}} \right)} \\ $$$${gcd}\left({a},{b}\right)×{lcm}\left({a},{b}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{min}\left({m}_{{k}} ,{h}_{{k}} \right)+{max}\left({m}_{{k}} ,{h}_{{k}} \right)} \\ $$$${gcd}\left({a},{b}\right)×{lcm}\left({a},{b}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{m}_{{k}} +{h}_{{k}} } \\ $$$${gcd}\left({a},{b}\right)×{lcm}\left({a},{b}\right)=\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{m}_{{k}} } \right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{k}} ^{{h}_{{k}} } \right) \\ $$$$\Rightarrow{gcd}\left({a},{b}\right)×{lcm}\left({a},{b}\right)={a}×{b} \\ $$

Commented by SANOGO last updated on 30/Dec/21

merci bien

$${merci}\:{bien} \\ $$

Commented by Rasheed.Sindhi last updated on 31/Dec/21

G_(Sir!) ^(rea) T

$$\mathbb{G}_{\mathrm{Sir}!} ^{\mathrm{rea}} \mathbb{T} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com