Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162864 by mathacek last updated on 01/Jan/22

Answered by Ar Brandon last updated on 01/Jan/22

I=∫_0 ^π xln(sinx)dx=∫_0 ^π (π−x)ln(sinx)dx     =π∫_0 ^π ln(sinx)dx−∫_0 ^π xln(sinx)dx  I=(π/2)∫_0 ^π ln(sinx)dx , x=2u ⇒dx=2du     =π∫_0 ^(π/2) ln(sin(2u))dx=π∫_0 ^(π/2) ln(2sinucosu)du     =π∫_0 ^(π/2) ln(2)du+π∫_0 ^(π/2) ln(sinu)du+π∫_0 ^(π/2) ln(cosu)du     =((π^2 ln2)/2)+2π∫_0 ^(π/2) ln(sinu)du, {∫_0 ^(π/2) ln(sinu)du=∫_0 ^(π/2) ln(cosu)du}     =((π^2 ln2)/2)−π^2 ln2=−(1/2)π^2 ln2

$${I}=\int_{\mathrm{0}} ^{\pi} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right){dx}=\int_{\mathrm{0}} ^{\pi} \left(\pi−{x}\right)\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$$$\:\:\:=\pi\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{sin}{x}\right){dx}−\int_{\mathrm{0}} ^{\pi} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$$${I}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{sin}{x}\right){dx}\:,\:{x}=\mathrm{2}{u}\:\Rightarrow{dx}=\mathrm{2}{du} \\ $$$$\:\:\:=\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}\left(\mathrm{2}{u}\right)\right){dx}=\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2sin}{u}\mathrm{cos}{u}\right){du} \\ $$$$\:\:\:=\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}\right){du}+\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{u}\right){du}+\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cos}{u}\right){du} \\ $$$$\:\:\:=\frac{\pi^{\mathrm{2}} \mathrm{ln2}}{\mathrm{2}}+\mathrm{2}\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{u}\right){du},\:\left\{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{u}\right){du}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cos}{u}\right){du}\right\} \\ $$$$\:\:\:=\frac{\pi^{\mathrm{2}} \mathrm{ln2}}{\mathrm{2}}−\pi^{\mathrm{2}} \mathrm{ln2}=−\frac{\mathrm{1}}{\mathrm{2}}\pi^{\mathrm{2}} \mathrm{ln2} \\ $$

Commented by Ar Brandon last updated on 01/Jan/22

I=∫_0 ^(π/2) ln(sinx)dx=∫_0 ^(π/2) ln(cosx)dx  2I=∫_0 ^(π/2) ln(sinxcosx)dx=∫_0 ^(π/2) ln((1/2)sin(2x))dx        =∫_0 ^(π/2) ln((1/2))dx+∫_0 ^(π/2) ln(sin2x)dx        =−((πln2)/2)+(1/2)∫_0 ^π ln(sinu)du

$$\mathcal{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\right){dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cos}{x}\right){dx} \\ $$$$\mathrm{2}\mathcal{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin}{x}\mathrm{cos}{x}\right){dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right){dx}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{sin2}{x}\right){dx} \\ $$$$\:\:\:\:\:\:=−\frac{\pi\mathrm{ln2}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{sin}{u}\right){du} \\ $$

Answered by Lordose last updated on 01/Jan/22

I = ∫_0 ^( 𝛑) xln(sin(x))dx =^(King′s Rule) ∫_0 ^( 𝛑) (𝛑−x)ln(sin(x))dx  2I = 𝛑∫_0 ^( 𝛑) ln(sin(x))dx =^(u=2x) (𝛑/2)∫_0 ^( 2𝛑) ln(sin((u/2)))dx  I = (𝛑/4)(−Cl_2 (2𝛑) − 2𝛑ln(2))  I = −((𝛑^2 ln(2))/2)

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \mathrm{xln}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx}\:\overset{\boldsymbol{\mathrm{King}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{Rule}}} {=}\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \left(\boldsymbol{\pi}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$\mathrm{2I}\:=\:\boldsymbol{\pi}\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \mathrm{ln}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx}\:\overset{\mathrm{u}=\mathrm{2x}} {=}\frac{\boldsymbol{\pi}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{2}\boldsymbol{\pi}} \mathrm{ln}\left(\mathrm{sin}\left(\frac{\mathrm{u}}{\mathrm{2}}\right)\right)\mathrm{dx} \\ $$$$\mathrm{I}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{4}}\left(−\boldsymbol{\mathrm{Cl}}_{\mathrm{2}} \left(\mathrm{2}\boldsymbol{\pi}\right)\:−\:\mathrm{2}\boldsymbol{\pi}\mathrm{ln}\left(\mathrm{2}\right)\right) \\ $$$$\mathrm{I}\:=\:−\frac{\boldsymbol{\pi}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$

Commented by mathacek last updated on 02/Jan/22

What′s for Cl_2 ?

$${What}'{s}\:{for}\:\boldsymbol{\mathrm{Cl}}_{\mathrm{2}} ? \\ $$

Commented by Ar Brandon last updated on 02/Jan/22

Clausen function  Cl_2 (z)=Σ_(n≥1) ((sin(nz))/n^2 )

$$\mathrm{Clausen}\:\mathrm{function} \\ $$$${Cl}_{\mathrm{2}} \left({z}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{sin}\left({nz}\right)}{{n}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com