Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162877 by HongKing last updated on 01/Jan/22

Find:  𝛀  = ∫_( 0) ^( 1)  (x^3 /(ln^2  (1 - x))) dx

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}\:-\:\mathrm{x}\right)}\:\mathrm{dx} \\ $$

Answered by Ar Brandon last updated on 02/Jan/22

Ω=∫_0 ^1 (x^3 /(ln^2 (1−x)))dx=∫_0 ^1 (((1−x)^3 )/(ln^2 x))dx  f(α)=∫_0 ^1 ((x^α (1−x)^3 )/(ln^2 x))dx⇒f^((2)) (α)=∫_0 ^1 x^α (1−x)^3 dx            =β(α+1, 4)=((6Γ(α+1))/(Γ(α+5)))=(6/((α+4)(α+3)(α+2)(α+1)))            =−(1/(α+4))+(3/(α+3))−(3/(α+2))+(1/(α+1))  f^((1)) (α)=−ln(α+4)+3ln(α+3)−3ln(α+2)+ln(α+1)  f(α)=−(α+4)[ln(α+4)−1]+3(α+3)[ln(α+3)−1]               −3(α+2)[ln(α+2)−1]+(α+1)[ln(α+1)−1]  f(0)=−4(ln4−1)+9(ln3−1)−6(ln2−1)−1           =ln((3^9 /(2^8 ×2^6 )))=∫_0 ^1 (x^3 /(ln^2 (1−x)))dx

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} {x}}{dx} \\ $$$${f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} \left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} {x}}{dx}\Rightarrow{f}^{\left(\mathrm{2}\right)} \left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\alpha} \left(\mathrm{1}−{x}\right)^{\mathrm{3}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\beta\left(\alpha+\mathrm{1},\:\mathrm{4}\right)=\frac{\mathrm{6}\Gamma\left(\alpha+\mathrm{1}\right)}{\Gamma\left(\alpha+\mathrm{5}\right)}=\frac{\mathrm{6}}{\left(\alpha+\mathrm{4}\right)\left(\alpha+\mathrm{3}\right)\left(\alpha+\mathrm{2}\right)\left(\alpha+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\frac{\mathrm{1}}{\alpha+\mathrm{4}}+\frac{\mathrm{3}}{\alpha+\mathrm{3}}−\frac{\mathrm{3}}{\alpha+\mathrm{2}}+\frac{\mathrm{1}}{\alpha+\mathrm{1}} \\ $$$${f}^{\left(\mathrm{1}\right)} \left(\alpha\right)=−\mathrm{ln}\left(\alpha+\mathrm{4}\right)+\mathrm{3ln}\left(\alpha+\mathrm{3}\right)−\mathrm{3ln}\left(\alpha+\mathrm{2}\right)+\mathrm{ln}\left(\alpha+\mathrm{1}\right) \\ $$$${f}\left(\alpha\right)=−\left(\alpha+\mathrm{4}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{4}\right)−\mathrm{1}\right]+\mathrm{3}\left(\alpha+\mathrm{3}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{3}\right)−\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{3}\left(\alpha+\mathrm{2}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{2}\right)−\mathrm{1}\right]+\left(\alpha+\mathrm{1}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{1}\right)−\mathrm{1}\right] \\ $$$${f}\left(\mathrm{0}\right)=−\mathrm{4}\left(\mathrm{ln4}−\mathrm{1}\right)+\mathrm{9}\left(\mathrm{ln3}−\mathrm{1}\right)−\mathrm{6}\left(\mathrm{ln2}−\mathrm{1}\right)−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{ln}\left(\frac{\mathrm{3}^{\mathrm{9}} }{\mathrm{2}^{\mathrm{8}} ×\mathrm{2}^{\mathrm{6}} }\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{dx} \\ $$

Commented by Lordose last updated on 02/Jan/22

After calculating F⁽²⁾(a), when integrating the result, There's supposed to be a constant, i. e ∫F⁽²⁾(a)da = F'(a) + C ∫F'(a) + C = F(a) + aC + D where C and D are constants

Commented by Ar Brandon last updated on 02/Jan/22

We study limits as α→−∞ after   integrating to get C=0

$$\mathrm{We}\:\mathrm{study}\:\mathrm{limits}\:\mathrm{as}\:\alpha\rightarrow−\infty\:\mathrm{after}\: \\ $$$$\mathrm{integrating}\:\mathrm{to}\:\mathrm{get}\:\mathrm{C}=\mathrm{0} \\ $$

Commented by Ar Brandon last updated on 02/Jan/22

f^((1)) (α)=∫_0 ^1 ((x^α (1−x)^3 )/(lnx))dx  =−ln(α+4)+3ln(α+3)−3ln(α+2)+ln(α+1)+C  lim_(α→−∞) f^((1)) (α)=0=lim_(α→−∞) ln((((α+3)^3 (α+1))/((α+4)(α+2)^3 )))+C  =lim_(α→−∞) ln((((1+(3/α))^3 (1+(1/α)))/((1+(4/α))(1+(2/α))^3 )))+C=ln(1)+C=0⇒C=0  f^((2)) (α)=∫_0 ^1 ((x^α (1−x)^3 )/(ln^2 x))dx  =−(α+4)[ln(α+4)−1]+3(α+3)[ln(α+3)−1]      −3(α+2)[ln(α+2)−1]+(α+1)[ln(α+1)−1]+D  lim_(α→−∞) f(α)=0  =lim_(α→−∞) ln((((α+3)^9 (α+1))/((α+4)^4 (α+2)^6 )))−αln(α+4)+3αln(α+3)      −3αln(α+2)+αln(α+1)+D  =D=0

$${f}^{\left(\mathrm{1}\right)} \left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} \left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{ln}{x}}{dx} \\ $$$$=−\mathrm{ln}\left(\alpha+\mathrm{4}\right)+\mathrm{3ln}\left(\alpha+\mathrm{3}\right)−\mathrm{3ln}\left(\alpha+\mathrm{2}\right)+\mathrm{ln}\left(\alpha+\mathrm{1}\right)+{C} \\ $$$$\underset{\alpha\rightarrow−\infty} {\mathrm{lim}}{f}^{\left(\mathrm{1}\right)} \left(\alpha\right)=\mathrm{0}=\underset{\alpha\rightarrow−\infty} {\mathrm{lim}ln}\left(\frac{\left(\alpha+\mathrm{3}\right)^{\mathrm{3}} \left(\alpha+\mathrm{1}\right)}{\left(\alpha+\mathrm{4}\right)\left(\alpha+\mathrm{2}\right)^{\mathrm{3}} }\right)+\mathrm{C} \\ $$$$=\underset{\alpha\rightarrow−\infty} {\mathrm{lim}ln}\left(\frac{\left(\mathrm{1}+\frac{\mathrm{3}}{\alpha}\right)^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\alpha}\right)}{\left(\mathrm{1}+\frac{\mathrm{4}}{\alpha}\right)\left(\mathrm{1}+\frac{\mathrm{2}}{\alpha}\right)^{\mathrm{3}} }\right)+\mathrm{C}=\mathrm{ln}\left(\mathrm{1}\right)+\mathrm{C}=\mathrm{0}\Rightarrow\mathrm{C}=\mathrm{0} \\ $$$${f}^{\left(\mathrm{2}\right)} \left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} \left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} {x}}{dx} \\ $$$$=−\left(\alpha+\mathrm{4}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{4}\right)−\mathrm{1}\right]+\mathrm{3}\left(\alpha+\mathrm{3}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{3}\right)−\mathrm{1}\right] \\ $$$$\:\:\:\:−\mathrm{3}\left(\alpha+\mathrm{2}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{2}\right)−\mathrm{1}\right]+\left(\alpha+\mathrm{1}\right)\left[\mathrm{ln}\left(\alpha+\mathrm{1}\right)−\mathrm{1}\right]+\mathrm{D} \\ $$$$\underset{\alpha\rightarrow−\infty} {\mathrm{lim}}{f}\left(\alpha\right)=\mathrm{0} \\ $$$$=\underset{\alpha\rightarrow−\infty} {\mathrm{lim}ln}\left(\frac{\left(\alpha+\mathrm{3}\right)^{\mathrm{9}} \left(\alpha+\mathrm{1}\right)}{\left(\alpha+\mathrm{4}\right)^{\mathrm{4}} \left(\alpha+\mathrm{2}\right)^{\mathrm{6}} }\right)−\alpha\mathrm{ln}\left(\alpha+\mathrm{4}\right)+\mathrm{3}\alpha\mathrm{ln}\left(\alpha+\mathrm{3}\right) \\ $$$$\:\:\:\:−\mathrm{3}\alpha\mathrm{ln}\left(\alpha+\mathrm{2}\right)+\alpha\mathrm{ln}\left(\alpha+\mathrm{1}\right)+\mathrm{D} \\ $$$$=\mathrm{D}=\mathrm{0} \\ $$

Commented by Lordose last updated on 02/Jan/22

Nice one Bro.

Commented by Ar Brandon last updated on 02/Jan/22

Thanks bro. You too made a good remark there.

Commented by HongKing last updated on 02/Jan/22

magnificent thank you so much my dear Sir

$$\mathrm{magnificent}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Answered by Ar Brandon last updated on 02/Jan/22

Ω=∫_0 ^1 (x^3 /(ln^2 (1−x)))dx=∫_0 ^1 (((1−x)^3 )/(ln^2 x))dx             x=e^(−t) ⇒dx=−e^(−t) dt      =∫_0 ^∞ (((1−e^(−t) )^3 )/t^2 )∙e^(−t) dt=∫_0 ^∞ ((e^(−t) /t^2 )−3(e^(−2t) /t^2 )+3(e^(−3t) /t^2 )−(e^(−4t) /t^2 ))dt      =∫_0 ^∞ ((t/(1+t))−((3t)/(2+t))+((3t)/(3+t))−(t/(4+t)))dt , maz identity      =∫_0 ^∞ (1−(1/(1+t))−3+(6/(2+t))+3−(9/(3+t))−1+(4/(4+t)))dt      =[ln(1+t)+6ln(2+t)−9ln(3+t)+4ln(4+t)]_0 ^∞       =[ln((((1+t)(2+t)^6 (4+t)^4 )/((3+t)^9 )))]_0 ^∞ =ln(1)−ln(((2^6 ×4^4 )/3^9 ))      =−ln(((2^6 ×2^8 )/3^9 ))=ln((3^9 /(2^8 ×2^6 )))

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} {x}}{dx}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}={e}^{−{t}} \Rightarrow{dx}=−{e}^{−{t}} {dt} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\infty} \frac{\left(\mathrm{1}−{e}^{−{t}} \right)^{\mathrm{3}} }{{t}^{\mathrm{2}} }\centerdot{e}^{−{t}} {dt}=\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} }−\mathrm{3}\frac{{e}^{−\mathrm{2}{t}} }{{t}^{\mathrm{2}} }+\mathrm{3}\frac{{e}^{−\mathrm{3}{t}} }{{t}^{\mathrm{2}} }−\frac{{e}^{−\mathrm{4}{t}} }{{t}^{\mathrm{2}} }\right){dt} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\infty} \left(\frac{{t}}{\mathrm{1}+{t}}−\frac{\mathrm{3}{t}}{\mathrm{2}+{t}}+\frac{\mathrm{3}{t}}{\mathrm{3}+{t}}−\frac{{t}}{\mathrm{4}+{t}}\right){dt}\:,\:\mathrm{maz}\:\mathrm{identity} \\ $$$$\:\:\:\:=\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{t}}−\mathrm{3}+\frac{\mathrm{6}}{\mathrm{2}+{t}}+\mathrm{3}−\frac{\mathrm{9}}{\mathrm{3}+{t}}−\mathrm{1}+\frac{\mathrm{4}}{\mathrm{4}+{t}}\right){dt} \\ $$$$\:\:\:\:=\left[\mathrm{ln}\left(\mathrm{1}+{t}\right)+\mathrm{6ln}\left(\mathrm{2}+{t}\right)−\mathrm{9ln}\left(\mathrm{3}+{t}\right)+\mathrm{4ln}\left(\mathrm{4}+{t}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:\:\:=\left[\mathrm{ln}\left(\frac{\left(\mathrm{1}+{t}\right)\left(\mathrm{2}+{t}\right)^{\mathrm{6}} \left(\mathrm{4}+{t}\right)^{\mathrm{4}} }{\left(\mathrm{3}+{t}\right)^{\mathrm{9}} }\right)\right]_{\mathrm{0}} ^{\infty} =\mathrm{ln}\left(\mathrm{1}\right)−\mathrm{ln}\left(\frac{\mathrm{2}^{\mathrm{6}} ×\mathrm{4}^{\mathrm{4}} }{\mathrm{3}^{\mathrm{9}} }\right) \\ $$$$\:\:\:\:=−\mathrm{ln}\left(\frac{\mathrm{2}^{\mathrm{6}} ×\mathrm{2}^{\mathrm{8}} }{\mathrm{3}^{\mathrm{9}} }\right)=\mathrm{ln}\left(\frac{\mathrm{3}^{\mathrm{9}} }{\mathrm{2}^{\mathrm{8}} ×\mathrm{2}^{\mathrm{6}} }\right) \\ $$

Commented by Lordose last updated on 02/Jan/22

Exactly what i used��

Commented by Ar Brandon last updated on 02/Jan/22

I stole the method from you this morning ��

Commented by Lordose last updated on 03/Jan/22

����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com