Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 163168 by kdaramaths last updated on 04/Jan/22

Commented by mr W last updated on 04/Jan/22

question is wrong!  there is no solution! see my proof  below.

$${question}\:{is}\:{wrong}! \\ $$$${there}\:{is}\:{no}\:{solution}!\:{see}\:{my}\:{proof} \\ $$$${below}. \\ $$

Answered by mahdipoor last updated on 04/Jan/22

divisors of n =  D_0 ) 1 , 5 , 5^2 , ... , 5^(α )    D_1 )119 , 119×5 , 119×5^2  , ... , 119×5^(α )   ...  D_β )119^(β ) , 119^β ×5 , ... , 119^(β ) ×5^α   ⇒  ΣD_i =119^i (1+5+25+...+5^α )=((119^i (5^(α+1) −1))/4)  Sum of divisors of n=ΣD_0 +ΣD_1 +...+ΣD_β =  ((5^(α+1) −1)/4)(1+119+119^2 +...+119^β )=  (((5^(α+1) −1)(119^(β+1) −1))/(4×118))=3720  ⇒(5^(α+1) −1)(119^(β+1) −1)=1755840  =124×14160  ⇒α=2   β=1

$${divisors}\:{of}\:{n}\:= \\ $$$$\left.{D}_{\mathrm{0}} \right)\:\mathrm{1}\:,\:\mathrm{5}\:,\:\mathrm{5}^{\mathrm{2}} ,\:...\:,\:\mathrm{5}^{\alpha\:} \: \\ $$$$\left.{D}_{\mathrm{1}} \right)\mathrm{119}\:,\:\mathrm{119}×\mathrm{5}\:,\:\mathrm{119}×\mathrm{5}^{\mathrm{2}} \:,\:...\:,\:\mathrm{119}×\mathrm{5}^{\alpha\:} \\ $$$$... \\ $$$$\left.{D}_{\beta} \right)\mathrm{119}^{\beta\:} ,\:\mathrm{119}^{\beta} ×\mathrm{5}\:,\:...\:,\:\mathrm{119}^{\beta\:} ×\mathrm{5}^{\alpha} \\ $$$$\Rightarrow \\ $$$$\Sigma{D}_{{i}} =\mathrm{119}^{{i}} \left(\mathrm{1}+\mathrm{5}+\mathrm{25}+...+\mathrm{5}^{\alpha} \right)=\frac{\mathrm{119}^{{i}} \left(\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}\right)}{\mathrm{4}} \\ $$$${Sum}\:{of}\:{divisors}\:{of}\:{n}=\Sigma{D}_{\mathrm{0}} +\Sigma{D}_{\mathrm{1}} +...+\Sigma{D}_{\beta} = \\ $$$$\frac{\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{119}+\mathrm{119}^{\mathrm{2}} +...+\mathrm{119}^{\beta} \right)= \\ $$$$\frac{\left(\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{119}^{\beta+\mathrm{1}} −\mathrm{1}\right)}{\mathrm{4}×\mathrm{118}}=\mathrm{3720} \\ $$$$\Rightarrow\left(\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{119}^{\beta+\mathrm{1}} −\mathrm{1}\right)=\mathrm{1755840} \\ $$$$=\mathrm{124}×\mathrm{14160} \\ $$$$\Rightarrow\alpha=\mathrm{2}\:\:\:\beta=\mathrm{1} \\ $$

Commented by mr W last updated on 04/Jan/22

have you checked the sum of divisors  of the number 5^2 119 (=2975) ?  it is 4464, not 3720!

$${have}\:{you}\:{checked}\:{the}\:{sum}\:{of}\:{divisors} \\ $$$${of}\:{the}\:{number}\:\mathrm{5}^{\mathrm{2}} \mathrm{119}\:\left(=\mathrm{2975}\right)\:? \\ $$$${it}\:{is}\:\mathrm{4464},\:{not}\:\mathrm{3720}! \\ $$

Commented by kdaramaths last updated on 04/Jan/22

thanks

Commented by mr W last updated on 04/Jan/22

Commented by mahdipoor last updated on 04/Jan/22

i think 119 is prime namber ! , you are   right Mr w , my ans is wrong .

$${i}\:{think}\:\mathrm{119}\:{is}\:{prime}\:{namber}\:!\:,\:{you}\:{are}\: \\ $$$${right}\:{Mr}\:{w}\:,\:{my}\:{ans}\:{is}\:{wrong}\:. \\ $$

Commented by mr W last updated on 05/Jan/22

your method is correct.  maybe the person who wrote the   question also thinks that 119 is a  prime number, because he expected  exactly that what you did.

$${your}\:{method}\:{is}\:{correct}. \\ $$$${maybe}\:{the}\:{person}\:{who}\:{wrote}\:{the}\: \\ $$$${question}\:{also}\:{thinks}\:{that}\:\mathrm{119}\:{is}\:{a} \\ $$$${prime}\:{number},\:{because}\:{he}\:{expected} \\ $$$${exactly}\:{that}\:{what}\:{you}\:{did}. \\ $$

Answered by mr W last updated on 04/Jan/22

n=5^α 119^β =5^α 7^β 17^β   α,β≥1  S=Σ_(p=0) ^α Σ_(q=0) ^β Σ_(r=0) ^β 5^p 7^q 17^r   S=((5^(α+1) −1)/(5−1))×((7^(β+1) −1)/(7−1))×((17^(β+1) −1)/(17−1))  S=(((5^(α+1) −1)(7^(β+1) −1)(17^(β+1) −1))/(384))=3720  so the question is to find α, β ∈N,  such that  (5^(α+1) −1)(7^(β+1) −1)(17^(β+1) −1)=3720×384    5^(α+1) −1<((3720×384)/((7^2 −1)(17^2 −1)))  α<log_5  [((3720×384)/((7^2 −1)(17^2 −1)))+1]−1≈1.88  ⇒α=1  (7^(β+1) −1)(17^(β+1) −1)<((3720×384)/((5^2 −1)))=59520  ⇒β<1.31   ⇒β=1    but with α=1, β=1:  S=(((5^2 −1)(7^2 −1)(17^2 −1))/(384))=864<3720  with α=2, β=1:  S=(((5^3 −1)(7^2 −1)(17^2 −1))/(384))=4464>3720  with α=1, β=2:  S=(((5^2 −1)(7^3 −1)(17^3 −1))/(384))=104994>3720  ⇒there exist no α,β such that  the sum of divisors of 5^α 119^β  is   3720!

$${n}=\mathrm{5}^{\alpha} \mathrm{119}^{\beta} =\mathrm{5}^{\alpha} \mathrm{7}^{\beta} \mathrm{17}^{\beta} \\ $$$$\alpha,\beta\geqslant\mathrm{1} \\ $$$${S}=\underset{{p}=\mathrm{0}} {\overset{\alpha} {\sum}}\underset{{q}=\mathrm{0}} {\overset{\beta} {\sum}}\underset{{r}=\mathrm{0}} {\overset{\beta} {\sum}}\mathrm{5}^{{p}} \mathrm{7}^{{q}} \mathrm{17}^{{r}} \\ $$$${S}=\frac{\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}}{\mathrm{5}−\mathrm{1}}×\frac{\mathrm{7}^{\beta+\mathrm{1}} −\mathrm{1}}{\mathrm{7}−\mathrm{1}}×\frac{\mathrm{17}^{\beta+\mathrm{1}} −\mathrm{1}}{\mathrm{17}−\mathrm{1}} \\ $$$${S}=\frac{\left(\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{7}^{\beta+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{17}^{\beta+\mathrm{1}} −\mathrm{1}\right)}{\mathrm{384}}=\mathrm{3720} \\ $$$${so}\:{the}\:{question}\:{is}\:{to}\:{find}\:\alpha,\:\beta\:\in\mathbb{N}, \\ $$$${such}\:{that} \\ $$$$\left(\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{7}^{\beta+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{17}^{\beta+\mathrm{1}} −\mathrm{1}\right)=\mathrm{3720}×\mathrm{384} \\ $$$$ \\ $$$$\mathrm{5}^{\alpha+\mathrm{1}} −\mathrm{1}<\frac{\mathrm{3720}×\mathrm{384}}{\left(\mathrm{7}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{17}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$\alpha<\mathrm{log}_{\mathrm{5}} \:\left[\frac{\mathrm{3720}×\mathrm{384}}{\left(\mathrm{7}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{17}^{\mathrm{2}} −\mathrm{1}\right)}+\mathrm{1}\right]−\mathrm{1}\approx\mathrm{1}.\mathrm{88} \\ $$$$\Rightarrow\alpha=\mathrm{1} \\ $$$$\left(\mathrm{7}^{\beta+\mathrm{1}} −\mathrm{1}\right)\left(\mathrm{17}^{\beta+\mathrm{1}} −\mathrm{1}\right)<\frac{\mathrm{3720}×\mathrm{384}}{\left(\mathrm{5}^{\mathrm{2}} −\mathrm{1}\right)}=\mathrm{59520} \\ $$$$\Rightarrow\beta<\mathrm{1}.\mathrm{31}\: \\ $$$$\Rightarrow\beta=\mathrm{1} \\ $$$$ \\ $$$${but}\:{with}\:\alpha=\mathrm{1},\:\beta=\mathrm{1}: \\ $$$${S}=\frac{\left(\mathrm{5}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{7}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{17}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{384}}=\mathrm{864}<\mathrm{3720} \\ $$$${with}\:\alpha=\mathrm{2},\:\beta=\mathrm{1}: \\ $$$${S}=\frac{\left(\mathrm{5}^{\mathrm{3}} −\mathrm{1}\right)\left(\mathrm{7}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{17}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{384}}=\mathrm{4464}>\mathrm{3720} \\ $$$${with}\:\alpha=\mathrm{1},\:\beta=\mathrm{2}: \\ $$$${S}=\frac{\left(\mathrm{5}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{7}^{\mathrm{3}} −\mathrm{1}\right)\left(\mathrm{17}^{\mathrm{3}} −\mathrm{1}\right)}{\mathrm{384}}=\mathrm{104994}>\mathrm{3720} \\ $$$$\Rightarrow{there}\:{exist}\:{no}\:\alpha,\beta\:{such}\:{that} \\ $$$${the}\:{sum}\:{of}\:{divisors}\:{of}\:\mathrm{5}^{\alpha} \mathrm{119}^{\beta} \:{is}\: \\ $$$$\mathrm{3720}! \\ $$

Commented by Tawa11 last updated on 06/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com