Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 16360 by ajfour last updated on 21/Jun/17

Answered by ajfour last updated on 21/Jun/17

 To find x=CD,  y=BD, z=AD  BE is drawn ⊥ to AD, AF is  drawn ⊥ to AD produced.   △BDE ∼ △ADF  (right ∠ and              vertically opposite angles)    (y/z)=((BD)/(AD))= ((BE)/(AF)) =((asin θ)/(bsin φ))     ....(i)  And  y+z = c                         ....(ii)   where  c=(√(a^2 +b^2 −2abcos (θ+φ)))    so using (i) and (ii),    y= (((asin 𝛉)/(asin 𝛉+bsin 𝛗)))c    z=(((bsin 𝛗)/(asin 𝛉+bsin 𝛗)))c   Now  x=CD=CE+DE                              =CF−DF           x = acos θ+asin θ tan δ   Also  x = bcos φ−bsin φ tan δ  ⇒  ((x−acos θ)/(x−bcos φ)) = − ((asin θ)/(bsin φ))   or x(asin θ+bsin φ)=absin θcos φ                                         +abcos θsin φ  i.e.   x= ((absin (𝛉+𝛗))/(asin 𝛉+bsin 𝛗))     Also  cos 𝛅 = ((asin θ)/y) = ((bsin φ)/z)                           = ((asin 𝛉+bsin 𝛗)/c) .

$$\:{To}\:{find}\:{x}={CD},\:\:{y}={BD},\:{z}={AD} \\ $$$${BE}\:{is}\:{drawn}\:\bot\:{to}\:{AD},\:{AF}\:{is} \\ $$$${drawn}\:\bot\:{to}\:{AD}\:{produced}. \\ $$$$\:\bigtriangleup{BDE}\:\sim\:\bigtriangleup{ADF}\:\:\left({right}\:\angle\:{and}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:{vertically}\:{opposite}\:{angles}\right) \\ $$$$\:\:\frac{{y}}{{z}}=\frac{{BD}}{{AD}}=\:\frac{{BE}}{{AF}}\:=\frac{{a}\mathrm{sin}\:\theta}{{b}\mathrm{sin}\:\phi}\:\:\:\:\:....\left({i}\right) \\ $$$${And}\:\:{y}+{z}\:=\:{c}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$$\:{where}\:\:{c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\left(\theta+\phi\right)}\: \\ $$$$\:{so}\:{using}\:\left({i}\right)\:{and}\:\left({ii}\right), \\ $$$$\:\:\boldsymbol{{y}}=\:\left(\frac{\boldsymbol{{a}}\mathrm{sin}\:\boldsymbol{\theta}}{\boldsymbol{{a}}\mathrm{sin}\:\boldsymbol{\theta}+\boldsymbol{{b}}\mathrm{sin}\:\boldsymbol{\phi}}\right)\boldsymbol{{c}} \\ $$$$\:\:\boldsymbol{{z}}=\left(\frac{\boldsymbol{{b}}\mathrm{sin}\:\boldsymbol{\phi}}{\boldsymbol{{a}}\mathrm{sin}\:\boldsymbol{\theta}+\boldsymbol{{b}}\mathrm{sin}\:\boldsymbol{\phi}}\right)\boldsymbol{{c}} \\ $$$$\:{Now}\:\:\boldsymbol{{x}}={CD}={CE}+{DE} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={CF}−{DF} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}\:=\:{a}\mathrm{cos}\:\theta+{a}\mathrm{sin}\:\theta\:\mathrm{tan}\:\delta\: \\ $$$${Also}\:\:\boldsymbol{{x}}\:=\:{b}\mathrm{cos}\:\phi−{b}\mathrm{sin}\:\phi\:\mathrm{tan}\:\delta \\ $$$$\Rightarrow\:\:\frac{{x}−{a}\mathrm{cos}\:\theta}{{x}−{b}\mathrm{cos}\:\phi}\:=\:−\:\frac{{a}\mathrm{sin}\:\theta}{{b}\mathrm{sin}\:\phi}\: \\ $$$${or}\:{x}\left({a}\mathrm{sin}\:\theta+{b}\mathrm{sin}\:\phi\right)={ab}\mathrm{sin}\:\theta\mathrm{cos}\:\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{ab}\mathrm{cos}\:\theta\mathrm{sin}\:\phi \\ $$$${i}.{e}.\:\:\:\boldsymbol{{x}}=\:\frac{\boldsymbol{{ab}}\mathrm{sin}\:\left(\boldsymbol{\theta}+\boldsymbol{\phi}\right)}{\boldsymbol{{a}}\mathrm{sin}\:\boldsymbol{\theta}+\boldsymbol{{b}}\mathrm{sin}\:\boldsymbol{\phi}}\: \\ $$$$\:\:{Also}\:\:\mathrm{cos}\:\boldsymbol{\delta}\:=\:\frac{{a}\mathrm{sin}\:\theta}{{y}}\:=\:\frac{{b}\mathrm{sin}\:\phi}{{z}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\boldsymbol{{a}}\mathrm{sin}\:\boldsymbol{\theta}+\boldsymbol{{b}}\mathrm{sin}\:\boldsymbol{\phi}}{\boldsymbol{{c}}}\:. \\ $$

Commented by mrW1 last updated on 21/Jun/17

good idea!

$$\mathrm{good}\:\mathrm{idea}! \\ $$

Commented by ajfour last updated on 21/Jun/17

i like your simple comment, sir  very appropriate for what i did.  Thanks Sir.

$${i}\:{like}\:{your}\:{simple}\:{comment},\:{sir} \\ $$$${very}\:{appropriate}\:{for}\:{what}\:{i}\:{did}. \\ $$$${Thanks}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com