Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 163700 by blackmamba last updated on 09/Jan/22

  K(x) = ((3 cos x)/(5+4sin x))    {: ((max K(x))),((min K(x))) } =?

$$\:\:\mathcal{K}\left({x}\right)\:=\:\frac{\mathrm{3}\:\mathrm{cos}\:{x}}{\mathrm{5}+\mathrm{4sin}\:{x}} \\ $$$$\:\left.\begin{matrix}{{max}\:\mathcal{K}\left({x}\right)}\\{{min}\:\mathcal{K}\left({x}\right)}\end{matrix}\right\}\:=? \\ $$

Answered by mr W last updated on 10/Jan/22

((3 cos x)/(5+4 sin x))=k  3 cos x−4k sin x=5k  (3/( (√(3^2 +(4k)^2 )))) cos x−((4k)/( (√(3^2 +(4k)^2 )))) sin x=((5k)/( (√(3^2 +(4k)^2 ))))  cos α cos x−sin α sin x=((5k)/( (√(3^2 +(4k)^2 ))))  cos (x+α)=((5k)/( (√(3^2 +(4k)^2 ))))  ((5k)/( (√(3^2 +(4k)^2 ))))≤1  25k^2 ≤9+16k^2   k^2 ≤1  −1≤k≤1  k(x)_(min) =−1  k(x)_(max) =1

$$\frac{\mathrm{3}\:\mathrm{cos}\:{x}}{\mathrm{5}+\mathrm{4}\:\mathrm{sin}\:{x}}={k} \\ $$$$\mathrm{3}\:\mathrm{cos}\:{x}−\mathrm{4}{k}\:\mathrm{sin}\:{x}=\mathrm{5}{k} \\ $$$$\frac{\mathrm{3}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}{k}\right)^{\mathrm{2}} }}\:\mathrm{cos}\:{x}−\frac{\mathrm{4}{k}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}{k}\right)^{\mathrm{2}} }}\:\mathrm{sin}\:{x}=\frac{\mathrm{5}{k}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}{k}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:{x}−\mathrm{sin}\:\alpha\:\mathrm{sin}\:{x}=\frac{\mathrm{5}{k}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}{k}\right)^{\mathrm{2}} }} \\ $$$$\mathrm{cos}\:\left({x}+\alpha\right)=\frac{\mathrm{5}{k}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}{k}\right)^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{5}{k}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}{k}\right)^{\mathrm{2}} }}\leqslant\mathrm{1} \\ $$$$\mathrm{25}{k}^{\mathrm{2}} \leqslant\mathrm{9}+\mathrm{16}{k}^{\mathrm{2}} \\ $$$${k}^{\mathrm{2}} \leqslant\mathrm{1} \\ $$$$−\mathrm{1}\leqslant{k}\leqslant\mathrm{1} \\ $$$${k}\left({x}\right)_{{min}} =−\mathrm{1} \\ $$$${k}\left({x}\right)_{{max}} =\mathrm{1} \\ $$

Answered by MJS_new last updated on 09/Jan/22

((3c)/(5+4s))=±((3(√(1−s^2 )))/(5+4s))  ±(d/ds)[((3(√(1−s^2 )))/(5+4s))]=0  ∓((3(5s+4))/((4s+5)^2 (√(1−s^2 ))))=0 ⇒ s=−(4/5) ⇒ −1≤K≤1

$$\frac{\mathrm{3}{c}}{\mathrm{5}+\mathrm{4}{s}}=\pm\frac{\mathrm{3}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }}{\mathrm{5}+\mathrm{4}{s}} \\ $$$$\pm\frac{{d}}{{ds}}\left[\frac{\mathrm{3}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }}{\mathrm{5}+\mathrm{4}{s}}\right]=\mathrm{0} \\ $$$$\mp\frac{\mathrm{3}\left(\mathrm{5}{s}+\mathrm{4}\right)}{\left(\mathrm{4}{s}+\mathrm{5}\right)^{\mathrm{2}} \sqrt{\mathrm{1}−{s}^{\mathrm{2}} }}=\mathrm{0}\:\Rightarrow\:{s}=−\frac{\mathrm{4}}{\mathrm{5}}\:\Rightarrow\:−\mathrm{1}\leqslant{K}\leqslant\mathrm{1} \\ $$

Commented by blackmamba last updated on 09/Jan/22

yes

$${yes} \\ $$

Answered by cortano1 last updated on 09/Jan/22

  (Q) Given K(x) = ((3cos x)/(5+4sin x))         Find max & min of K(x)   Let y=K(x)=((3cos x)/(5+4sin x))   5y+4y sin x=3cos x    5y = 3cos x−4y sin x ...(i)     By Cauchy − Schwarz    ∣ 3cos x−4y sin x ∣ ≤ (√((3)^2 +(−4y)^2 ))   ∣5y∣ ≤ (√(9+16y^2 ))   ⇔ 25y^2  ≤ 9+16y^2    ⇔ 9(y^2 −1)≤ 0   ⇔ −1≤y≤1    ∴  −1≤K(x)≤1 ⇒ {: ((max K(x)=1)),((min K(x)=−1)) }

$$\:\:\left({Q}\right)\:{Given}\:\mathcal{K}\left({x}\right)\:=\:\frac{\mathrm{3cos}\:{x}}{\mathrm{5}+\mathrm{4sin}\:{x}}\: \\ $$$$\:\:\:\:\:\:{Find}\:{max}\:\&\:{min}\:{of}\:\mathcal{K}\left({x}\right) \\ $$$$\:{Let}\:{y}=\mathcal{K}\left({x}\right)=\frac{\mathrm{3cos}\:{x}}{\mathrm{5}+\mathrm{4sin}\:{x}} \\ $$$$\:\mathrm{5}{y}+\mathrm{4}{y}\:\mathrm{sin}\:{x}=\mathrm{3cos}\:{x}\: \\ $$$$\:\mathrm{5}{y}\:=\:\mathrm{3cos}\:{x}−\mathrm{4}{y}\:\mathrm{sin}\:{x}\:...\left({i}\right) \\ $$$$ \\ $$$$\:{By}\:{Cauchy}\:−\:{Schwarz}\: \\ $$$$\:\mid\:\mathrm{3cos}\:{x}−\mathrm{4}{y}\:\mathrm{sin}\:{x}\:\mid\:\leqslant\:\sqrt{\left(\mathrm{3}\right)^{\mathrm{2}} +\left(−\mathrm{4}{y}\right)^{\mathrm{2}} } \\ $$$$\:\mid\mathrm{5}{y}\mid\:\leqslant\:\sqrt{\mathrm{9}+\mathrm{16}{y}^{\mathrm{2}} } \\ $$$$\:\Leftrightarrow\:\mathrm{25}{y}^{\mathrm{2}} \:\leqslant\:\mathrm{9}+\mathrm{16}{y}^{\mathrm{2}} \\ $$$$\:\Leftrightarrow\:\mathrm{9}\left({y}^{\mathrm{2}} −\mathrm{1}\right)\leqslant\:\mathrm{0} \\ $$$$\:\Leftrightarrow\:−\mathrm{1}\leqslant{y}\leqslant\mathrm{1}\: \\ $$$$\:\therefore\:\:−\mathrm{1}\leqslant\mathcal{K}\left({x}\right)\leqslant\mathrm{1}\:\Rightarrow\left.\begin{matrix}{{max}\:\mathcal{K}\left({x}\right)=\mathrm{1}}\\{{min}\:\mathcal{K}\left({x}\right)=−\mathrm{1}}\end{matrix}\right\} \\ $$

Commented by blackmamba last updated on 09/Jan/22

yes

$${yes} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com