Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 163704 by mnjuly1970 last updated on 09/Jan/22

             Ω= Σ_(n=1) ^∞ n(ζ (1+n) −1) =?

$$ \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\left(\zeta\:\left(\mathrm{1}+{n}\right)\:−\mathrm{1}\right)\:=? \\ $$$$ \\ $$

Answered by Kamel last updated on 09/Jan/22

  Ψ(1+x)+(1/(1+x))=1−γ−(Σ_(n=1) ^(+∞) (ζ(n+1)−1)(−x)^n   ∴ lim_(x→−1) (Ψ^((1)) (1+x)−(1/((1+x)^2 )))=Σ_(n=1) ^(+∞) n(ζ(n+1−1)  Ψ^((1)) (1+x)=Σ_(k=0) ^(+∞) (1/((k+x+1)^2 ))=(1/((1+x)^2 ))+Σ_(k=1) ^(+∞) (1/((1+x+k)^2 ))  ∴ Σ_(n=1) ^(+∞) n(ζ(n+1)−1)=Σ_(k=1) ^(+∞) (1/k^2 )=(π^2 /6)

$$ \\ $$$$\Psi\left(\mathrm{1}+{x}\right)+\frac{\mathrm{1}}{\mathrm{1}+{x}}=\mathrm{1}−\gamma−\left(\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\left(\zeta\left({n}+\mathrm{1}\right)−\mathrm{1}\right)\left(−{x}\right)^{{n}} \right. \\ $$$$\therefore\:\underset{{x}\rightarrow−\mathrm{1}} {{lim}}\left(\Psi^{\left(\mathrm{1}\right)} \left(\mathrm{1}+{x}\right)−\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\right)=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{n}\left(\zeta\left({n}+\mathrm{1}−\mathrm{1}\right)\right. \\ $$$$\Psi^{\left(\mathrm{1}\right)} \left(\mathrm{1}+{x}\right)=\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left({k}+{x}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }+\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{1}+{x}+{k}\right)^{\mathrm{2}} } \\ $$$$\therefore\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{n}\left(\zeta\left({n}+\mathrm{1}\right)−\mathrm{1}\right)=\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by mnjuly1970 last updated on 10/Jan/22

very nice solution...

$${very}\:{nice}\:{solution}... \\ $$

Answered by qaz last updated on 10/Jan/22

Σ_(n=1) ^∞ n(ζ(1+n)−1)  =Σ_(n=1) ^∞ Σ_(k=2) ^∞ (n/k^(1+n) )  =Σ_(k=2) ^∞ Σ_(n=0) ^∞ ((n+1)/k^(n+2) )  =Σ_(k=2) ^∞ (1/k^2 )(D+1)∣_(x=1/k) (1/(1−x))  =Σ_(k=2) ^∞ (1/k^2 )∙((2−(1/k))/((1−(1/k))^2 ))  =Σ_(k=1) ^∞ ((1/k^2 )+(1/k)−(1/(k+1)))  =(π^2 /6)+1

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{n}\left(\zeta\left(\mathrm{1}+\mathrm{n}\right)−\mathrm{1}\right) \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{k}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{n}}{\mathrm{k}^{\mathrm{1}+\mathrm{n}} } \\ $$$$=\underset{\mathrm{k}=\mathrm{2}} {\overset{\infty} {\sum}}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{n}+\mathrm{1}}{\mathrm{k}^{\mathrm{n}+\mathrm{2}} } \\ $$$$=\underset{\mathrm{k}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\left(\mathrm{D}+\mathrm{1}\right)\mid_{\mathrm{x}=\mathrm{1}/\mathrm{k}} \frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}} \\ $$$$=\underset{\mathrm{k}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\centerdot\frac{\mathrm{2}−\frac{\mathrm{1}}{\mathrm{k}}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}}\right)^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\right) \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 10/Jan/22

thank you so much sir      (π^( 2) /6)

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$$$\:\:\:\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com