Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 163798 by kdaramaths last updated on 10/Jan/22

      by a simple method calculate                        Σ_(k=0) ^n COS(kx)

$$ \\ $$$$\:\:\:\:{by}\:{a}\:{simple}\:{method}\:{calculate}\:\:\: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sum_{{k}=\mathrm{0}} ^{{n}} {COS}\left({kx}\right) \\ $$$$ \\ $$$$ \\ $$

Answered by Ar Brandon last updated on 10/Jan/22

Q162872

$$\mathrm{Q162872} \\ $$

Answered by Kamel last updated on 10/Jan/22

        by a simple method calculate                      S_n =  Σ_(k=0) ^n cos(kx), T_n =Σ_(k=0) ^n sin(kx)  (cos(x)−1)S_n +sin(x)T_n =Σ_(k=0) ^n cos((k−1)x)=cos(x)−cos(nx)  −sin(x)S_n +(cos(x)−1)T_n =Σ_(k=0) ^n sin((k−1)x)=−sin(x)−sin(nx)  ∴  { ((2sin^2 ((x/2))S_n −2sin((x/2))cos((x/2))T_n =cos(nx)−cos(x)...(1))),((2sin((x/2))cos((x/2))S_n +2sin^2 ((x/2))T_n =(sin(x)+sin(nx))...(2))) :}  (1).sin((x/2))+(2)cos((x/2))⇒S_n =((sin((x/2))cos(nx)−sin((x/2))cos(x)+cos((x/2))sin(x)+cos((x/2))sin(nx))/(2sin((x/2))))  ∴ S_n =((sin((n+(1/2))x)+sin((x/2)))/(2sin((x/2))))=((sin(((n+1)/2)x)cos(((nx)/2)))/(sin((x/2))))

$$ \\ $$$$ \\ $$$$\:\:\:\:{by}\:{a}\:{simple}\:{method}\:{calculate}\:\:\: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{S}_{{n}} =\:\:\sum_{{k}=\mathrm{0}} ^{{n}} {cos}\left({kx}\right),\:{T}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{sin}\left({kx}\right) \\ $$$$\left({cos}\left({x}\right)−\mathrm{1}\right){S}_{{n}} +{sin}\left({x}\right){T}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{cos}\left(\left({k}−\mathrm{1}\right){x}\right)={cos}\left({x}\right)−{cos}\left({nx}\right) \\ $$$$−{sin}\left({x}\right){S}_{{n}} +\left({cos}\left({x}\right)−\mathrm{1}\right){T}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{sin}\left(\left({k}−\mathrm{1}\right){x}\right)=−{sin}\left({x}\right)−{sin}\left({nx}\right) \\ $$$$\therefore\:\begin{cases}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right){S}_{{n}} −\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right){T}_{{n}} ={cos}\left({nx}\right)−{cos}\left({x}\right)...\left(\mathrm{1}\right)}\\{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right){S}_{{n}} +\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right){T}_{{n}} =\left({sin}\left({x}\right)+{sin}\left({nx}\right)\right)...\left(\mathrm{2}\right)}\end{cases} \\ $$$$\left(\mathrm{1}\right).{sin}\left(\frac{{x}}{\mathrm{2}}\right)+\left(\mathrm{2}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)\Rightarrow{S}_{{n}} =\frac{{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left({nx}\right)−{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left({x}\right)+{cos}\left(\frac{{x}}{\mathrm{2}}\right){sin}\left({x}\right)+{cos}\left(\frac{{x}}{\mathrm{2}}\right){sin}\left({nx}\right)}{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\therefore\:{S}_{{n}} =\frac{{sin}\left(\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}\right)+{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right)}=\frac{{sin}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\right){cos}\left(\frac{{nx}}{\mathrm{2}}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com