Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 16455 by Tinkutara last updated on 22/Jun/17

The speed of a projectile when it is at  its greatest height is (√(2/5)) times its  speed at half the maximum height.  What is its angle of projection?

$$\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{a}\:\mathrm{projectile}\:\mathrm{when}\:\mathrm{it}\:\mathrm{is}\:\mathrm{at} \\ $$$$\mathrm{its}\:\mathrm{greatest}\:\mathrm{height}\:\mathrm{is}\:\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:\mathrm{times}\:\mathrm{its} \\ $$$$\mathrm{speed}\:\mathrm{at}\:\mathrm{half}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{height}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{its}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{projection}? \\ $$

Answered by sandy_suhendra last updated on 23/Jun/17

A=point of the maximum height  B=point of half maximum height  V_A  = V_0  cos α  h_A  = ((V_0 ^(  2)  sin^2 α)/(2g))  V_A  = (√(2/5)) V_B  ⇒ V_B  = (5/2)(√(2/5)) V_A =(5/2)(√(2/5)) V_0  cos α       h_B  = (1/2)h_A  = ((V_0 ^(  2)  sin^2 α)/(4g))  KE_A +PE_A =KE_B +PE_B   (1/2)m.V_A ^(  2)  + m.g.h_A  = (1/2)m.V_B ^(  2)  + m.g.h_B   (1/2)m(V_0  cos α)^2  + m.g.((V_0 ^(  2)  sin^2 α)/(2g)) = (1/2)m((5/2)(√(2/5)) V_0  cos α)^2  + m.g.((V_0 ^(  2)  sin^2 α)/(4g))        (1/2) cos^2 α + (1/2) sin^2 α = (5/4) cos^2 α + (1/4) sin^2 α  (1/4) sin^2 α = (3/4) cos^2 α  tan^2 α = 3 ⇒ tan α = (√3) ⇒ α = 60°

$$\mathrm{A}=\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{height} \\ $$$$\mathrm{B}=\mathrm{point}\:\mathrm{of}\:\mathrm{half}\:\mathrm{maximum}\:\mathrm{height} \\ $$$$\mathrm{V}_{\mathrm{A}} \:=\:\mathrm{V}_{\mathrm{0}} \:\mathrm{cos}\:\alpha \\ $$$$\mathrm{h}_{\mathrm{A}} \:=\:\frac{\mathrm{V}_{\mathrm{0}} ^{\:\:\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \alpha}{\mathrm{2g}} \\ $$$$\mathrm{V}_{\mathrm{A}} \:=\:\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:\mathrm{V}_{\mathrm{B}} \:\Rightarrow\:\mathrm{V}_{\mathrm{B}} \:=\:\frac{\mathrm{5}}{\mathrm{2}}\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:\mathrm{V}_{\mathrm{A}} =\frac{\mathrm{5}}{\mathrm{2}}\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:\mathrm{V}_{\mathrm{0}} \:\mathrm{cos}\:\alpha\:\:\:\:\: \\ $$$$\mathrm{h}_{\mathrm{B}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{h}_{\mathrm{A}} \:=\:\frac{\mathrm{V}_{\mathrm{0}} ^{\:\:\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \alpha}{\mathrm{4g}} \\ $$$$\mathrm{KE}_{\mathrm{A}} +\mathrm{PE}_{\mathrm{A}} =\mathrm{KE}_{\mathrm{B}} +\mathrm{PE}_{\mathrm{B}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}.\mathrm{V}_{\mathrm{A}} ^{\:\:\mathrm{2}} \:+\:\mathrm{m}.\mathrm{g}.\mathrm{h}_{\mathrm{A}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}.\mathrm{V}_{\mathrm{B}} ^{\:\:\mathrm{2}} \:+\:\mathrm{m}.\mathrm{g}.\mathrm{h}_{\mathrm{B}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}\left(\mathrm{V}_{\mathrm{0}} \:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} \:+\:\mathrm{m}.\mathrm{g}.\frac{\mathrm{V}_{\mathrm{0}} ^{\:\:\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \alpha}{\mathrm{2g}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}\left(\frac{\mathrm{5}}{\mathrm{2}}\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:\mathrm{V}_{\mathrm{0}} \:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} \:+\:\mathrm{m}.\mathrm{g}.\frac{\mathrm{V}_{\mathrm{0}} ^{\:\:\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \alpha}{\mathrm{4g}}\:\:\:\:\:\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}^{\mathrm{2}} \alpha\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}^{\mathrm{2}} \alpha\:=\:\frac{\mathrm{5}}{\mathrm{4}}\:\mathrm{cos}^{\mathrm{2}} \alpha\:+\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{sin}^{\mathrm{2}} \alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{sin}^{\mathrm{2}} \alpha\:=\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{cos}^{\mathrm{2}} \alpha \\ $$$$\mathrm{tan}^{\mathrm{2}} \alpha\:=\:\mathrm{3}\:\Rightarrow\:\mathrm{tan}\:\alpha\:=\:\sqrt{\mathrm{3}}\:\Rightarrow\:\alpha\:=\:\mathrm{60}° \\ $$

Commented by Tinkutara last updated on 23/Jun/17

But answer is 60°.

$$\mathrm{But}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{60}°. \\ $$

Commented by sandy_suhendra last updated on 23/Jun/17

sorry, I′ve a mistake at the second line from the bottom  but I′ve corrected

$$\mathrm{sorry},\:\mathrm{I}'\mathrm{ve}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{at}\:\mathrm{the}\:\mathrm{second}\:\mathrm{line}\:\mathrm{from}\:\mathrm{the}\:\mathrm{bottom} \\ $$$$\mathrm{but}\:\mathrm{I}'\mathrm{ve}\:\mathrm{corrected} \\ $$

Commented by Tinkutara last updated on 24/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by ajfour last updated on 23/Jun/17

At half the max. height:  (1/2)mv^2 =(1/2)mu^2 − ((mgH)/2)   v^2 =u^2 −((u^2 sin^2 θ)/2)          ...(i)  Also as given   ucos θ =(√(2/5)) v  or  v^2 = (5/2)u^2 cos^2 θ         (ii)  equating (i) with (ii)   u^2 −((u^2 sin^2 θ)/2) = (5/2)u^2 cos^2 θ   (1+tan^2 θ)−(1/2)tan^2 θ = (5/2)   (1/2)tan^2 θ= (3/2)   ⇒  tan θ = ±(√3)   θ =  60° , 120° .

$${At}\:{half}\:{the}\:{max}.\:{height}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{mu}^{\mathrm{2}} −\:\frac{{mgH}}{\mathrm{2}} \\ $$$$\:{v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\frac{{u}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${Also}\:{as}\:{given}\:\:\:{u}\mathrm{cos}\:\theta\:=\sqrt{\frac{\mathrm{2}}{\mathrm{5}}}\:{v} \\ $$$${or}\:\:{v}^{\mathrm{2}} =\:\frac{\mathrm{5}}{\mathrm{2}}{u}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta\:\:\:\:\:\:\:\:\:\left({ii}\right) \\ $$$${equating}\:\left({i}\right)\:{with}\:\left({ii}\right) \\ $$$$\:{u}^{\mathrm{2}} −\frac{{u}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{2}}\:=\:\frac{\mathrm{5}}{\mathrm{2}}{u}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta\right)−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}\:^{\mathrm{2}} \theta\:=\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}\:^{\mathrm{2}} \theta=\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\Rightarrow\:\:\mathrm{tan}\:\theta\:=\:\pm\sqrt{\mathrm{3}}\: \\ $$$$\theta\:=\:\:\mathrm{60}°\:,\:\mathrm{120}°\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 24/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com