Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 164626 by amin96 last updated on 19/Jan/22

Commented by mr W last updated on 19/Jan/22

⇒ C)

$$\left.\Rightarrow\:{C}\right) \\ $$

Answered by mr W last updated on 20/Jan/22

Commented by mr W last updated on 20/Jan/22

say we have a regular polygon with  n sides.  R=radius  a=side length  α=(π/n)  a=2R sin α    let d_i =PP_i   a^2 =d_1 ^2 +d_2 ^2 −2d_1 d_2  cos α  a^2 =d_2 ^2 +d_3 ^2 −2d_2 d_3  cos α  ...  a^2 =d_(n−1) ^2 +d_n ^2 −2d_(n−1) d_n  cos α  a^2 =d_n ^2 +d_1 ^2 −2d_n d_1  cos (n−1)α   ← cos (n−1)α=cos (π−α)=−cos α  Σ:  na^2 =2(d_1 ^2 +d_2 ^2 +...+d_n ^2 )−2(d_1 d_2 +d_2 d_3 +...+d_(n−1) d_n −d_n d_1 )cos α  na^2 =2(d_1 ^2 +d_2 ^2 +...+d_n ^2 )−(1/2)(d_1 d_2 +d_2 d_3 +...+d_(n−1) d_n −d_n d_1 )sin  α×(4/(tan α))  na^2 =2(d_1 ^2 +d_2 ^2 +...+d_n ^2 )−A_(polygon) ×(4/(tan α))  d_1 ^2 +d_2 ^2 +...+d_n ^2 =(n/2)a^2 +((2A_(polygon) )/(tan α))  A_(polygon) =n×((R^2  sin 2α)/2)=((nR^2 )/2) sin 2α  d_1 ^2 +d_2 ^2 +...+d_n ^2 =(n/2)×4R^2 sin^2  α+((2nR^2  sin 2α)/(2 tan α))  d_1 ^2 +d_2 ^2 +...+d_n ^2 =2nR^2 sin^2  α+2nR^2  cos^2  α  ⇒d_1 ^2 +d_2 ^2 +...+d_n ^2 =2nR^2   generally for regular n−side polygon:   determinant (((PP_1 ^2 +PP_2 ^2 +...+PP_n ^2 =2nR^2 )))  in case of octagon:  n=8 , R=1  PA^2 +PB^2 +...+PH^2 =2×8×1^2 =16

$${say}\:{we}\:{have}\:{a}\:{regular}\:{polygon}\:{with} \\ $$$${n}\:{sides}. \\ $$$${R}={radius} \\ $$$${a}={side}\:{length} \\ $$$$\alpha=\frac{\pi}{{n}} \\ $$$${a}=\mathrm{2}{R}\:\mathrm{sin}\:\alpha \\ $$$$ \\ $$$${let}\:{d}_{{i}} ={PP}_{{i}} \\ $$$${a}^{\mathrm{2}} ={d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}{d}_{\mathrm{1}} {d}_{\mathrm{2}} \:\mathrm{cos}\:\alpha \\ $$$${a}^{\mathrm{2}} ={d}_{\mathrm{2}} ^{\mathrm{2}} +{d}_{\mathrm{3}} ^{\mathrm{2}} −\mathrm{2}{d}_{\mathrm{2}} {d}_{\mathrm{3}} \:\mathrm{cos}\:\alpha \\ $$$$... \\ $$$${a}^{\mathrm{2}} ={d}_{{n}−\mathrm{1}} ^{\mathrm{2}} +{d}_{{n}} ^{\mathrm{2}} −\mathrm{2}{d}_{{n}−\mathrm{1}} {d}_{{n}} \:\mathrm{cos}\:\alpha \\ $$$${a}^{\mathrm{2}} ={d}_{{n}} ^{\mathrm{2}} +{d}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{d}_{{n}} {d}_{\mathrm{1}} \:\mathrm{cos}\:\left({n}−\mathrm{1}\right)\alpha\:\:\:\leftarrow\:\mathrm{cos}\:\left({n}−\mathrm{1}\right)\alpha=\mathrm{cos}\:\left(\pi−\alpha\right)=−\mathrm{cos}\:\alpha \\ $$$$\Sigma: \\ $$$${na}^{\mathrm{2}} =\mathrm{2}\left({d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} \right)−\mathrm{2}\left({d}_{\mathrm{1}} {d}_{\mathrm{2}} +{d}_{\mathrm{2}} {d}_{\mathrm{3}} +...+{d}_{{n}−\mathrm{1}} {d}_{{n}} −{d}_{{n}} {d}_{\mathrm{1}} \right)\mathrm{cos}\:\alpha \\ $$$${na}^{\mathrm{2}} =\mathrm{2}\left({d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{2}}\left({d}_{\mathrm{1}} {d}_{\mathrm{2}} +{d}_{\mathrm{2}} {d}_{\mathrm{3}} +...+{d}_{{n}−\mathrm{1}} {d}_{{n}} −{d}_{{n}} {d}_{\mathrm{1}} \right)\mathrm{sin}\:\:\alpha×\frac{\mathrm{4}}{\mathrm{tan}\:\alpha} \\ $$$${na}^{\mathrm{2}} =\mathrm{2}\left({d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} \right)−{A}_{{polygon}} ×\frac{\mathrm{4}}{\mathrm{tan}\:\alpha} \\ $$$${d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} =\frac{{n}}{\mathrm{2}}{a}^{\mathrm{2}} +\frac{\mathrm{2}{A}_{{polygon}} }{\mathrm{tan}\:\alpha} \\ $$$${A}_{{polygon}} ={n}×\frac{{R}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}}=\frac{{nR}^{\mathrm{2}} }{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}\alpha \\ $$$${d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} =\frac{{n}}{\mathrm{2}}×\mathrm{4}{R}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha+\frac{\mathrm{2}{nR}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{2}\:\mathrm{tan}\:\alpha} \\ $$$${d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} =\mathrm{2}{nR}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\alpha+\mathrm{2}{nR}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$$\Rightarrow{d}_{\mathrm{1}} ^{\mathrm{2}} +{d}_{\mathrm{2}} ^{\mathrm{2}} +...+{d}_{{n}} ^{\mathrm{2}} =\mathrm{2}{nR}^{\mathrm{2}} \\ $$$${generally}\:{for}\:{regular}\:{n}−{side}\:{polygon}: \\ $$$$\begin{array}{|c|}{{PP}_{\mathrm{1}} ^{\mathrm{2}} +{PP}_{\mathrm{2}} ^{\mathrm{2}} +...+{PP}_{{n}} ^{\mathrm{2}} =\mathrm{2}{nR}^{\mathrm{2}} }\\\hline\end{array} \\ $$$${in}\:{case}\:{of}\:{octagon}: \\ $$$${n}=\mathrm{8}\:,\:{R}=\mathrm{1} \\ $$$${PA}^{\mathrm{2}} +{PB}^{\mathrm{2}} +...+{PH}^{\mathrm{2}} =\mathrm{2}×\mathrm{8}×\mathrm{1}^{\mathrm{2}} =\mathrm{16} \\ $$

Commented by Tawa11 last updated on 19/Jan/22

Weldone sir. Great

$$\mathrm{Weldone}\:\mathrm{sir}.\:\mathrm{Great} \\ $$

Commented by amin96 last updated on 20/Jan/22

bravo sir nice solution

$$\boldsymbol{\mathrm{bravo}}\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{nice}}\:\boldsymbol{\mathrm{solution}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com