Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165099 by SANOGO last updated on 26/Jan/22

 the rest of the division euclidienne of  10^(99)   by  13×17 is?

$$\:{the}\:{rest}\:{of}\:{the}\:{division}\:{euclidienne}\:{of} \\ $$$$\mathrm{10}^{\mathrm{99}} \:\:{by}\:\:\mathrm{13}×\mathrm{17}\:{is}? \\ $$

Commented by Rasheed.Sindhi last updated on 26/Jan/22

Translate into English also.

$$\mathcal{T}{ranslate}\:{into}\:\mathcal{E}{nglish}\:{also}. \\ $$

Answered by mr W last updated on 27/Jan/22

13×17=221  10^(99) =(1000)^(33)   =(4×221+116)^(33)   ⊨116^(33)   =116×(60×221+196)^(16)   ⊨116×196^(16)   =116×(173×221+183)^8   ⊨116×183^8   =116×(151×221+118)^4   ⊨116×118^4   =116×(60×221+664)^2   ⊨116×664^2   =116×(1995×221+1)  ⊨116 =answer  with ⊨ i mean   “has the same remainder as”

$$\mathrm{13}×\mathrm{17}=\mathrm{221} \\ $$$$\mathrm{10}^{\mathrm{99}} =\left(\mathrm{1000}\right)^{\mathrm{33}} \\ $$$$=\left(\mathrm{4}×\mathrm{221}+\mathrm{116}\right)^{\mathrm{33}} \\ $$$$\vDash\mathrm{116}^{\mathrm{33}} \\ $$$$=\mathrm{116}×\left(\mathrm{60}×\mathrm{221}+\mathrm{196}\right)^{\mathrm{16}} \\ $$$$\vDash\mathrm{116}×\mathrm{196}^{\mathrm{16}} \\ $$$$=\mathrm{116}×\left(\mathrm{173}×\mathrm{221}+\mathrm{183}\right)^{\mathrm{8}} \\ $$$$\vDash\mathrm{116}×\mathrm{183}^{\mathrm{8}} \\ $$$$=\mathrm{116}×\left(\mathrm{151}×\mathrm{221}+\mathrm{118}\right)^{\mathrm{4}} \\ $$$$\vDash\mathrm{116}×\mathrm{118}^{\mathrm{4}} \\ $$$$=\mathrm{116}×\left(\mathrm{60}×\mathrm{221}+\mathrm{664}\right)^{\mathrm{2}} \\ $$$$\vDash\mathrm{116}×\mathrm{664}^{\mathrm{2}} \\ $$$$=\mathrm{116}×\left(\mathrm{1995}×\mathrm{221}+\mathrm{1}\right) \\ $$$$\vDash\mathrm{116}\:={answer} \\ $$$${with}\:\vDash\:{i}\:{mean}\: \\ $$$$``{has}\:{the}\:{same}\:{remainder}\:{as}'' \\ $$

Answered by Rasheed.Sindhi last updated on 27/Jan/22

Another way...  Say, 10^(99) ≡x(mod 221)   [∵ 13×17=221]   ∵ gcd(10,221)=1  ∴ 10^(φ(221)) ≡1(mod 221)  Now, φ(221)=221(1−(1/(13)))(1−(1/(17)))=192  ∴ 10^(192) ≡1(mod 221)  Trying for dicferent divisors of 192  We can see that     10^(48) ≡1(mod 221)     (10^(48) )^2 ≡(1)^2 (mod 221)       10^(96) ≡1(mod 221).........(i)  Also can be observed that        10^3 ≡116(mod 221)......(ii)  (i)×(ii):  10^(99) ≡116(mod 221)              x=116

$$\mathrm{Another}\:\mathrm{way}... \\ $$$${Say},\:\mathrm{10}^{\mathrm{99}} \equiv{x}\left({mod}\:\mathrm{221}\right)\:\:\:\left[\because\:\mathrm{13}×\mathrm{17}=\mathrm{221}\right] \\ $$$$\:\because\:\mathrm{gcd}\left(\mathrm{10},\mathrm{221}\right)=\mathrm{1} \\ $$$$\therefore\:\mathrm{10}^{\phi\left(\mathrm{221}\right)} \equiv\mathrm{1}\left({mod}\:\mathrm{221}\right) \\ $$$${Now},\:\phi\left(\mathrm{221}\right)=\mathrm{221}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{13}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{17}}\right)=\mathrm{192} \\ $$$$\therefore\:\mathrm{10}^{\mathrm{192}} \equiv\mathrm{1}\left({mod}\:\mathrm{221}\right) \\ $$$$\mathcal{T}{rying}\:{for}\:{dicferent}\:{divisors}\:{of}\:\mathrm{192} \\ $$$${We}\:{can}\:{see}\:{that} \\ $$$$\:\:\:\mathrm{10}^{\mathrm{48}} \equiv\mathrm{1}\left({mod}\:\mathrm{221}\right) \\ $$$$\:\:\:\left(\mathrm{10}^{\mathrm{48}} \right)^{\mathrm{2}} \equiv\left(\mathrm{1}\right)^{\mathrm{2}} \left({mod}\:\mathrm{221}\right) \\ $$$$\:\:\:\:\:\mathrm{10}^{\mathrm{96}} \equiv\mathrm{1}\left({mod}\:\mathrm{221}\right).........\left({i}\right) \\ $$$${Also}\:{can}\:{be}\:{observed}\:{that} \\ $$$$\:\:\:\:\:\:\mathrm{10}^{\mathrm{3}} \equiv\mathrm{116}\left({mod}\:\mathrm{221}\right)......\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right):\:\:\mathrm{10}^{\mathrm{99}} \equiv\mathrm{116}\left({mod}\:\mathrm{221}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{116} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com