Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 165581 by mnjuly1970 last updated on 04/Feb/22

  ϕ(t)=∫_0 ^( (π/2)) ( sin(x)+t cos(x))^( 2) dx  find  the  value of the extermum                 of   ϕ (t).

$$ \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:{sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\:\mathrm{2}} {dx} \\ $$$${find}\:\:{the}\:\:{value}\:{of}\:{the}\:{extermum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:\:\:\varphi\:\left({t}\right). \\ $$

Answered by aleks041103 last updated on 04/Feb/22

sin(x)+tcos(x)=(√(1+t^2 ))sin(x+arctan(t))  ⇒ϕ(t)=∫_0 ^(π/2) ((sin^2 (x+a))/(1+t^2 ))dx=  =(1+t^2 )∫_a ^(a+π/2) sin^2 x dx , a=tan^(−1) t  ∫sin^2 x dx= ∫((1−cos(2x))/2)dx=  =(x/2)−(1/4)sin(2x)  ⇒∫_a ^(a+π/2) sin^2 x dx=(π/4)−(1/4)(sin(π+2a)−sin(2a))=  =(π/4)+sin(a)cos(a)=  =(π/4)+tan(a)cos^2 (a)=  =(π/4)+(t/(1+tan^2 (a)))=(π/4)+(t/(1+t^2 ))  ⇒ϕ(t)=(π/4)(1+t^2 )+t

$${sin}\left({x}\right)+{tcos}\left({x}\right)=\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{sin}\left({x}+{arctan}\left({t}\right)\right) \\ $$$$\Rightarrow\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{sin}^{\mathrm{2}} \left({x}+{a}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dx}= \\ $$$$=\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\int_{{a}} ^{{a}+\pi/\mathrm{2}} {sin}^{\mathrm{2}} {x}\:{dx}\:,\:{a}={tan}^{−\mathrm{1}} {t} \\ $$$$\int{sin}^{\mathrm{2}} {x}\:{dx}=\:\int\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}{dx}= \\ $$$$=\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{x}\right) \\ $$$$\Rightarrow\int_{{a}} ^{{a}+\pi/\mathrm{2}} {sin}^{\mathrm{2}} {x}\:{dx}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}\left({sin}\left(\pi+\mathrm{2}{a}\right)−{sin}\left(\mathrm{2}{a}\right)\right)= \\ $$$$=\frac{\pi}{\mathrm{4}}+{sin}\left({a}\right){cos}\left({a}\right)= \\ $$$$=\frac{\pi}{\mathrm{4}}+{tan}\left({a}\right){cos}^{\mathrm{2}} \left({a}\right)= \\ $$$$=\frac{\pi}{\mathrm{4}}+\frac{{t}}{\mathrm{1}+{tan}^{\mathrm{2}} \left({a}\right)}=\frac{\pi}{\mathrm{4}}+\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\varphi\left({t}\right)=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+{t} \\ $$$$ \\ $$

Commented by aleks041103 last updated on 04/Feb/22

ϕ(t)=(π/4)t^2 +t+(π/4)  ϕ′=(π/2)t+1=0  ⇒t=−(2/π)  ⇒ϕ_(extr) =(π/4) (4/π^2 )−(2/π)+(π/4)=  =−(1/π)+(π/4)=((π^2 −4)/(4π))=ϕ_(extr.)

$$\varphi\left({t}\right)=\frac{\pi}{\mathrm{4}}{t}^{\mathrm{2}} +{t}+\frac{\pi}{\mathrm{4}} \\ $$$$\varphi'=\frac{\pi}{\mathrm{2}}{t}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{t}=−\frac{\mathrm{2}}{\pi} \\ $$$$\Rightarrow\varphi_{{extr}} =\frac{\pi}{\mathrm{4}}\:\frac{\mathrm{4}}{\pi^{\mathrm{2}} }−\frac{\mathrm{2}}{\pi}+\frac{\pi}{\mathrm{4}}= \\ $$$$=−\frac{\mathrm{1}}{\pi}+\frac{\pi}{\mathrm{4}}=\frac{\pi^{\mathrm{2}} −\mathrm{4}}{\mathrm{4}\pi}=\varphi_{{extr}.} \\ $$

Answered by mahdipoor last updated on 05/Feb/22

ϕ^′ (t)=lim_(k→t) ((ϕ(k)−ϕ(t))/(x−t))=  lim_(k→t) ((∫_0 ^( π/2) (k^2 −t^2 )cos^2 x+2(k−t)sinx.cosx)/(k−t))=  lim_(k→t) ∫_0 ^( π/2) (k+t)cos^2 x+2sinx.cosx =  2t∫_0 ^( π/2) cos^2 x +∫_0 ^( π/2) 2sinx.cosx=(π/2)t+1  ⇒ ϕ^′ (t)=0 ⇒ t=−(2/π)  ⇒ϕ(t)=∫ϕ^′ (t).dt=(π/4)t^2 +t+c  ⇒ϕ(0)=∫_0 ^( π/2) (sinx)^2 =(π/4) ⇒c=(π/4)  min ϕ = ϕ(−(2/π))=((π^2 −4)/(4π))

$$\varphi^{'} \left({t}\right)=\underset{{k}\rightarrow{t}} {\mathrm{lim}}\frac{\varphi\left({k}\right)−\varphi\left({t}\right)}{{x}−{t}}= \\ $$$$\underset{{k}\rightarrow{t}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left({k}^{\mathrm{2}} −{t}^{\mathrm{2}} \right){cos}^{\mathrm{2}} {x}+\mathrm{2}\left({k}−{t}\right){sinx}.{cosx}}{{k}−{t}}= \\ $$$$\underset{{k}\rightarrow{t}} {\mathrm{lim}}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left({k}+{t}\right){cos}^{\mathrm{2}} {x}+\mathrm{2}{sinx}.{cosx}\:= \\ $$$$\mathrm{2}{t}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {cos}^{\mathrm{2}} {x}\:+\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{2}{sinx}.{cosx}=\frac{\pi}{\mathrm{2}}{t}+\mathrm{1} \\ $$$$\Rightarrow\:\varphi^{'} \left({t}\right)=\mathrm{0}\:\Rightarrow\:{t}=−\frac{\mathrm{2}}{\pi} \\ $$$$\Rightarrow\varphi\left({t}\right)=\int\varphi^{'} \left({t}\right).{dt}=\frac{\pi}{\mathrm{4}}{t}^{\mathrm{2}} +{t}+{c} \\ $$$$\Rightarrow\varphi\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left({sinx}\right)^{\mathrm{2}} =\frac{\pi}{\mathrm{4}}\:\Rightarrow{c}=\frac{\pi}{\mathrm{4}} \\ $$$${min}\:\varphi\:=\:\varphi\left(−\frac{\mathrm{2}}{\pi}\right)=\frac{\pi^{\mathrm{2}} −\mathrm{4}}{\mathrm{4}\pi} \\ $$$$ \\ $$

Commented by aleks041103 last updated on 04/Feb/22

On the second line:  ((∫_0 ^( π/2) [(k^2 −t^2 )cos^2 x+2(k−t)sinx.cosx]dx)/(k−t))  since  ϕ(t)=∫_0 ^(π/2) (sin(x)+t cos(x))^2 dx

$${On}\:{the}\:{second}\:{line}: \\ $$$$\frac{\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \left[\left({k}^{\mathrm{2}} −{t}^{\mathrm{2}} \right){cos}^{\mathrm{2}} {x}+\mathrm{2}\left({k}−{t}\right){sinx}.{cosx}\right]{dx}}{{k}−{t}} \\ $$$${since} \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left({sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\mathrm{2}} {dx} \\ $$

Commented by mahdipoor last updated on 04/Feb/22

thanks for your hint

$${thanks}\:{for}\:{your}\:{hint} \\ $$

Commented by mahdipoor last updated on 05/Feb/22

bozorgvari aziz

$${bozorgvari}\:{aziz}\: \\ $$

Commented by mnjuly1970 last updated on 04/Feb/22

        ali bood jenabe mahdipoor.  mamnoon.

$$\:\:\:\:\:\:\:\:{ali}\:{bood}\:{jenabe}\:{mahdipoor}. \\ $$$${mamnoon}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com