Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 166009 by Rasheed.Sindhi last updated on 11/Feb/22

 { ((x^2 +y^2 +z^2 =70)),((x^3 +y^3 +z^3 =64)),((x^4 +y^4 +z^4 =2002)),(((x+y)(y+z)(z+x)=?)) :}   (Use Newton-Identities  or otherwise)

$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{70}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{64}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\mathrm{2002}}\\{\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)=?}\end{cases}\: \\ $$$$\left({Use}\:\boldsymbol{{Newton}}-\boldsymbol{{Identities}}\right. \\ $$$$\left.{or}\:{otherwise}\right) \\ $$

Commented by mr W last updated on 11/Feb/22

in reversed direction there are multiple  solutions.  the equation system has 24 solution  triples (x,y,z).

$${in}\:{reversed}\:{direction}\:{there}\:{are}\:{multiple} \\ $$$${solutions}. \\ $$$${the}\:{equation}\:{system}\:{has}\:\mathrm{24}\:{solution} \\ $$$${triples}\:\left({x},{y},{z}\right). \\ $$

Commented by Rasheed.Sindhi last updated on 12/Feb/22

24!!!!!!!!!!!!!!!!!...I couldn′t expect!

$$\mathrm{24}!!!!!!!!!!!!!!!!!...\mathrm{I}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{expect}! \\ $$

Commented by Rasheed.Sindhi last updated on 12/Feb/22

This is an altered form of Q#165984.

$$\mathrm{This}\:\mathrm{is}\:\mathrm{an}\:\mathrm{altered}\:\mathrm{form}\:\mathrm{of}\:{Q}#\mathrm{165984}. \\ $$

Commented by mr W last updated on 12/Feb/22

4^(th)  degree ⇒4 roots.  symmetry for x,y,z ⇒each roots means 6 triples  therefore 4×6=24 triples

$$\mathrm{4}^{{th}} \:{degree}\:\Rightarrow\mathrm{4}\:{roots}. \\ $$$${symmetry}\:{for}\:{x},{y},{z}\:\Rightarrow{each}\:{roots}\:{means}\:\mathrm{6}\:{triples} \\ $$$${therefore}\:\mathrm{4}×\mathrm{6}=\mathrm{24}\:{triples} \\ $$

Answered by mr W last updated on 12/Feb/22

S=(x+y)(y+z)(z+x)  =2xyz+xy(x+y)+yz(y+z)+zx(z+x)  =(x+y+z)(xy+yz+zx)−xyz  =e_1 e_2 −e_3     p_2 =e_1 p_1 −2e_2   ⇒e_1 ^2 −2e_2 =70  p_3 =e_1 p_2 −e_2 p_1 +3e_3   ⇒70e_1 −e_1 e_2 +3e_3 =64  p_4 =e_1 p_3 −e_2 p_2 +e_3 p_1   ⇒64e_1 −70e_2 +e_1 e_3 =2002    6e_3 =e_1 ^3 −210e_1 +128  e_1 ^4 −420e_1 ^2 +512e_1 +2688=0  (e_1 +2)(e_1 ^3 −2e_1 ^2 −416e_1 +1344)=0  ⇒e_1 =−2  ⇒e_1 ^3 −2e_1 ^2 −416e_1 +1344=0  let e_1 =s+(2/3)  s^3 −((1252)/3)s+((28784)/(27))=0  s=((4(√(313)))/3) sin (((2kπ)/3)+(1/3) sin^(−1) ((1799)/( 313(√(313)))))  ⇒e_1 =(2/3)+((4(√(313)))/3) sin (((2kπ)/3)+(1/3) sin^(−1) ((1799)/( 313(√(313)))))    e_2 =(e_1 ^2 /2)−35  e_3 =(e_1 ^3 /6)−35e_1 +((64)/3)  S=e_1 e_2 −e_3 =((e_1 ^3 −64)/3)  ⇒S_1 =(((−2)^3 −64 )/3)=−24  ⇒S_(2,3,4) =(1/3){[(2/3)+((4(√(313)))/3) sin (((2kπ)/3)+(1/3) sin^(−1) ((1799)/( 313(√(313)))))]^3 −64}  ≈−9.7517, 2516.6841, −3080.2657

$${S}=\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right) \\ $$$$=\mathrm{2}{xyz}+{xy}\left({x}+{y}\right)+{yz}\left({y}+{z}\right)+{zx}\left({z}+{x}\right) \\ $$$$=\left({x}+{y}+{z}\right)\left({xy}+{yz}+{zx}\right)−{xyz} \\ $$$$={e}_{\mathrm{1}} {e}_{\mathrm{2}} −{e}_{\mathrm{3}} \\ $$$$ \\ $$$${p}_{\mathrm{2}} ={e}_{\mathrm{1}} {p}_{\mathrm{1}} −\mathrm{2}{e}_{\mathrm{2}} \\ $$$$\Rightarrow{e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{e}_{\mathrm{2}} =\mathrm{70} \\ $$$${p}_{\mathrm{3}} ={e}_{\mathrm{1}} {p}_{\mathrm{2}} −{e}_{\mathrm{2}} {p}_{\mathrm{1}} +\mathrm{3}{e}_{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{70}{e}_{\mathrm{1}} −{e}_{\mathrm{1}} {e}_{\mathrm{2}} +\mathrm{3}{e}_{\mathrm{3}} =\mathrm{64} \\ $$$${p}_{\mathrm{4}} ={e}_{\mathrm{1}} {p}_{\mathrm{3}} −{e}_{\mathrm{2}} {p}_{\mathrm{2}} +{e}_{\mathrm{3}} {p}_{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{64}{e}_{\mathrm{1}} −\mathrm{70}{e}_{\mathrm{2}} +{e}_{\mathrm{1}} {e}_{\mathrm{3}} =\mathrm{2002} \\ $$$$ \\ $$$$\mathrm{6}{e}_{\mathrm{3}} ={e}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{210}{e}_{\mathrm{1}} +\mathrm{128} \\ $$$${e}_{\mathrm{1}} ^{\mathrm{4}} −\mathrm{420}{e}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{512}{e}_{\mathrm{1}} +\mathrm{2688}=\mathrm{0} \\ $$$$\left({e}_{\mathrm{1}} +\mathrm{2}\right)\left({e}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{2}{e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{416}{e}_{\mathrm{1}} +\mathrm{1344}\right)=\mathrm{0} \\ $$$$\Rightarrow{e}_{\mathrm{1}} =−\mathrm{2} \\ $$$$\Rightarrow{e}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{2}{e}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{416}{e}_{\mathrm{1}} +\mathrm{1344}=\mathrm{0} \\ $$$${let}\:{e}_{\mathrm{1}} ={s}+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${s}^{\mathrm{3}} −\frac{\mathrm{1252}}{\mathrm{3}}{s}+\frac{\mathrm{28784}}{\mathrm{27}}=\mathrm{0} \\ $$$${s}=\frac{\mathrm{4}\sqrt{\mathrm{313}}}{\mathrm{3}}\:\mathrm{sin}\:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1799}}{\:\mathrm{313}\sqrt{\mathrm{313}}}\right) \\ $$$$\Rightarrow{e}_{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{4}\sqrt{\mathrm{313}}}{\mathrm{3}}\:\mathrm{sin}\:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1799}}{\:\mathrm{313}\sqrt{\mathrm{313}}}\right) \\ $$$$ \\ $$$${e}_{\mathrm{2}} =\frac{{e}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}}−\mathrm{35} \\ $$$${e}_{\mathrm{3}} =\frac{{e}_{\mathrm{1}} ^{\mathrm{3}} }{\mathrm{6}}−\mathrm{35}{e}_{\mathrm{1}} +\frac{\mathrm{64}}{\mathrm{3}} \\ $$$${S}={e}_{\mathrm{1}} {e}_{\mathrm{2}} −{e}_{\mathrm{3}} =\frac{{e}_{\mathrm{1}} ^{\mathrm{3}} −\mathrm{64}}{\mathrm{3}} \\ $$$$\Rightarrow{S}_{\mathrm{1}} =\frac{\left(−\mathrm{2}\right)^{\mathrm{3}} −\mathrm{64}\:}{\mathrm{3}}=−\mathrm{24} \\ $$$$\Rightarrow{S}_{\mathrm{2},\mathrm{3},\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{3}}\left\{\left[\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{4}\sqrt{\mathrm{313}}}{\mathrm{3}}\:\mathrm{sin}\:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1799}}{\:\mathrm{313}\sqrt{\mathrm{313}}}\right)\right]^{\mathrm{3}} −\mathrm{64}\right\} \\ $$$$\approx−\mathrm{9}.\mathrm{7517},\:\mathrm{2516}.\mathrm{6841},\:−\mathrm{3080}.\mathrm{2657} \\ $$

Commented by Rasheed.Sindhi last updated on 12/Feb/22

Great sir!

$$\mathbb{G}\boldsymbol{\mathrm{reat}}\:\boldsymbol{\mathrm{sir}}! \\ $$

Commented by nurtani last updated on 12/Feb/22

Good job sir !!!

$${Good}\:{job}\:{sir}\:!!! \\ $$

Commented by Tawa11 last updated on 12/Feb/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com