Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167024 by peter frank last updated on 04/Mar/22

∫sec θtan^4 θdθ

$$\int\mathrm{sec}\:\theta\mathrm{tan}\:^{\mathrm{4}} \theta\mathrm{d}\theta \\ $$

Answered by cortano1 last updated on 05/Mar/22

 let t = tan θ  I=∫ (t^4 /( (√(1+t^2 )))) = ∫ ((t^3 (t))/( (√(1+t^2 )))) dt  IBP  { ((u=t^3 ⇒du=3t^2  dt)),((v=∫(1/2) ((d(1+t^2 ))/( (√(1+t^2 )))) = (√(1+t^2 )))) :}  I=t^3 (√(1+t^2 ))−∫ 3t^2  (√(1+t^2 )) dt  I=t^3  (√(1+t^2 ))−3∫t (t(√(1+t^2 ))) dt  I=t^3  (√(1+t^2 )) −3[ (1/3)t (√((1+t^2 )^3 ))−(1/3)∫(1+t^2 )^(3/2) dt ]  I= t^3  (√(1+t^2 ))−t (√((1+t^2 )^3 ))+∫ (1+t^2 )^(3/2)  dt

$$\:\mathrm{let}\:\mathrm{t}\:=\:\mathrm{tan}\:\theta \\ $$$$\mathrm{I}=\int\:\frac{\mathrm{t}^{\mathrm{4}} }{\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\:=\:\int\:\frac{\mathrm{t}^{\mathrm{3}} \left(\mathrm{t}\right)}{\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\:\mathrm{dt} \\ $$$$\mathrm{IBP}\:\begin{cases}{\mathrm{u}=\mathrm{t}^{\mathrm{3}} \Rightarrow\mathrm{du}=\mathrm{3t}^{\mathrm{2}} \:\mathrm{dt}}\\{\mathrm{v}=\int\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{d}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\:=\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}\end{cases} \\ $$$$\mathrm{I}=\mathrm{t}^{\mathrm{3}} \sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }−\int\:\mathrm{3t}^{\mathrm{2}} \:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt} \\ $$$$\mathrm{I}=\mathrm{t}^{\mathrm{3}} \:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }−\mathrm{3}\int\mathrm{t}\:\left(\mathrm{t}\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)\:\mathrm{dt} \\ $$$$\mathrm{I}=\mathrm{t}^{\mathrm{3}} \:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:−\mathrm{3}\left[\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{t}\:\sqrt{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{3}}\int\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \mathrm{dt}\:\right] \\ $$$$\mathrm{I}=\:\mathrm{t}^{\mathrm{3}} \:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }−\mathrm{t}\:\sqrt{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{3}} }+\int\:\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:\mathrm{dt}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com