Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167048 by mnjuly1970 last updated on 05/Mar/22

       prove that    Φ= ∫_0 ^( 1) x.ψ (2+x )= 2 −(1/2)ln(8π)            −−−

$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\psi\:\left(\mathrm{2}+{x}\:\right)=\:\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{8}\pi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−−− \\ $$

Answered by shikaridwan last updated on 05/Mar/22

ψ(x+2)=ψ(x+1)+(1/(x+1))=ψ(x)+(1/x)+(1/(x+1))  ∫_0 ^1 xψ(2+x)dx=∫_0 ^1 2−(1/(x+1))+xψ(x)dx  =2−log (2)+[xlog(Γ(x))]_0 ^1 −∫_0 ^1 log(Γ(x))dx  =2−log (2)−log((√(2π)))  =2−(1/2)log (8π)

$$\psi\left({x}+\mathrm{2}\right)=\psi\left({x}+\mathrm{1}\right)+\frac{\mathrm{1}}{{x}+\mathrm{1}}=\psi\left({x}\right)+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\psi\left(\mathrm{2}+{x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}−\frac{\mathrm{1}}{{x}+\mathrm{1}}+{x}\psi\left({x}\right){dx} \\ $$$$=\mathrm{2}−\mathrm{log}\:\left(\mathrm{2}\right)+\left[{xlog}\left(\Gamma\left({x}\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\Gamma\left({x}\right)\right){dx} \\ $$$$=\mathrm{2}−\mathrm{log}\:\left(\mathrm{2}\right)−{log}\left(\sqrt{\mathrm{2}\pi}\right) \\ $$$$=\mathrm{2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}\:\left(\mathrm{8}\pi\right) \\ $$

Commented by shikaridwan last updated on 05/Mar/22

Hi sir! Can you recognize me?

$${Hi}\:{sir}!\:{Can}\:{you}\:{recognize}\:{me}? \\ $$

Commented by mnjuly1970 last updated on 05/Mar/22

thsnk you so much  Mr.Dwaypayan ...thanks alot     and  Welcome again  ....

$${thsnk}\:{you}\:{so}\:{much} \\ $$$${Mr}.{Dwaypayan}\:...{thanks}\:{alot} \\ $$$$\:\:\:{and}\:\:{Welcome}\:{again}\:\:.... \\ $$$$\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com