Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168677 by infinityaction last updated on 15/Apr/22

Commented by infinityaction last updated on 15/Apr/22

please evaluate this problem

$${please}\:{evaluate}\:{this}\:{problem} \\ $$

Answered by mnjuly1970 last updated on 16/Apr/22

    Ω= ∫_0 ^( 2020) x.∣sin(πx)∣dx          = 2020∫_0 ^( 2020) ∣sin(πx)∣dx−Ω       2Ω= 2020{∫_0 ^( 1) sin(πx)  −∫_1 ^( 2) sin(πx)+∫_2 ^( 3) sin(πx)dx               − ∫_3 ^( 4) sin(πx)dx+...−∫_(2019) ^( 2020) sin(πx)dx             =  (2020) (2020)∫_0 ^( 1) sin(πx)dx          2 Ω= 2020^( 2)  ((2/π))              ∴  (π∫_0 ^( 2020) x.∣sin(πx)∣dx)^( (1/2)) = 2020

$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{2020}} {x}.\mid{sin}\left(\pi{x}\right)\mid{dx} \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{2020}\int_{\mathrm{0}} ^{\:\mathrm{2020}} \mid{sin}\left(\pi{x}\right)\mid{dx}−\Omega \\ $$$$\:\:\:\:\:\mathrm{2}\Omega=\:\mathrm{2020}\left\{\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}\left(\pi{x}\right)\:\:−\int_{\mathrm{1}} ^{\:\mathrm{2}} {sin}\left(\pi{x}\right)+\int_{\mathrm{2}} ^{\:\mathrm{3}} {sin}\left(\pi{x}\right){dx}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\int_{\mathrm{3}} ^{\:\mathrm{4}} {sin}\left(\pi{x}\right){dx}+...−\int_{\mathrm{2019}} ^{\:\mathrm{2020}} {sin}\left(\pi{x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\:\left(\mathrm{2020}\right)\:\left(\mathrm{2020}\right)\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}\left(\pi{x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}\:\Omega=\:\mathrm{2020}^{\:\mathrm{2}} \:\left(\frac{\mathrm{2}}{\pi}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\left(\pi\int_{\mathrm{0}} ^{\:\mathrm{2020}} {x}.\mid{sin}\left(\pi{x}\right)\mid{dx}\right)^{\:\frac{\mathrm{1}}{\mathrm{2}}} =\:\mathrm{2020} \\ $$$$ \\ $$

Commented by infinityaction last updated on 16/Apr/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mnjuly1970 last updated on 16/Apr/22

grateful....

$${grateful}.... \\ $$

Answered by mr W last updated on 16/Apr/22

for n=even:  ∫_n ^(n+1) x sin πx dx  =−(1/π)∫_n ^(n+1) x d(cos πx)  =−(1/π){[x cos πx]_n ^(n+1) −∫_n ^(n+1)  cos πx dx}  =−(1/π){−(2n+1)−(1/π)[sin πx]_n ^(n+1) }  =((2n+1)/π)  π∫_n ^(n+1) x sin πx dx=2n+1  π∫_0 ^(2020) x ∣sin πx∣ dx=1+3+5+...+4039=2020^2   (√(π∫_0 ^(2020) x ∣sin πx∣ dx))=2020

$${for}\:{n}={even}: \\ $$$$\int_{{n}} ^{{n}+\mathrm{1}} {x}\:\mathrm{sin}\:\pi{x}\:{dx} \\ $$$$=−\frac{\mathrm{1}}{\pi}\int_{{n}} ^{{n}+\mathrm{1}} {x}\:{d}\left(\mathrm{cos}\:\pi{x}\right) \\ $$$$=−\frac{\mathrm{1}}{\pi}\left\{\left[{x}\:\mathrm{cos}\:\pi{x}\right]_{{n}} ^{{n}+\mathrm{1}} −\int_{{n}} ^{{n}+\mathrm{1}} \:\mathrm{cos}\:\pi{x}\:{dx}\right\} \\ $$$$=−\frac{\mathrm{1}}{\pi}\left\{−\left(\mathrm{2}{n}+\mathrm{1}\right)−\frac{\mathrm{1}}{\pi}\left[\mathrm{sin}\:\pi{x}\right]_{{n}} ^{{n}+\mathrm{1}} \right\} \\ $$$$=\frac{\mathrm{2}{n}+\mathrm{1}}{\pi} \\ $$$$\pi\int_{{n}} ^{{n}+\mathrm{1}} {x}\:\mathrm{sin}\:\pi{x}\:{dx}=\mathrm{2}{n}+\mathrm{1} \\ $$$$\pi\int_{\mathrm{0}} ^{\mathrm{2020}} {x}\:\mid\mathrm{sin}\:\pi{x}\mid\:{dx}=\mathrm{1}+\mathrm{3}+\mathrm{5}+...+\mathrm{4039}=\mathrm{2020}^{\mathrm{2}} \\ $$$$\sqrt{\pi\int_{\mathrm{0}} ^{\mathrm{2020}} {x}\:\mid\mathrm{sin}\:\pi{x}\mid\:{dx}}=\mathrm{2020} \\ $$

Commented by infinityaction last updated on 16/Apr/22

but sir answer is 2020

$${but}\:{sir}\:{answer}\:{is}\:\mathrm{2020} \\ $$

Commented by mr W last updated on 16/Apr/22

yes. i′ve fixed.

$${yes}.\:{i}'{ve}\:{fixed}. \\ $$

Commented by infinityaction last updated on 16/Apr/22

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by amin96 last updated on 16/Apr/22

bravo

$${bravo} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com