Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 168859 by Shrinava last updated on 19/Apr/22

Prove that:  1. A + B^(−)  = A^(−)  ∙ B^(−)    ,   AB^(−)  = A^(−)  + B^(−)   2. (A + C)(B + C) = AB + C

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{1}.\:\overline {\mathrm{A}\:+\:\mathrm{B}}\:=\:\overline {\mathrm{A}}\:\centerdot\:\overline {\mathrm{B}}\:\:\:,\:\:\:\overline {\mathrm{AB}}\:=\:\overline {\mathrm{A}}\:+\:\overline {\mathrm{B}} \\ $$$$\mathrm{2}.\:\left(\mathrm{A}\:+\:\mathrm{C}\right)\left(\mathrm{B}\:+\:\mathrm{C}\right)\:=\:\mathrm{AB}\:+\:\mathrm{C} \\ $$

Answered by Rasheed.Sindhi last updated on 19/Apr/22

1.  A+B^(−) =A^− ∙B^(−)    determinant ((A,B,(A+B),(A+B^(−) ),A^− ,B^− ,(A^− ∙B^(−) )),(0,0,(    0),(    1),1,1,(   1)),(0,1,(    1),(    0),1,0,(   0)),(1,0,(    1),(    0),0,1,(   0)),(1,1,(    1),(    0),0,0,(   0)))   A∙B^(−) =A^− +B^(−)    determinant ((A,B,(A∙B),(A∙B^(−) ),A^− ,B^− ,(A^− +B^(−) )),(0,0,(    0),(    1),1,1,(   1)),(0,1,(    0),(    1),1,0,(   1)),(1,0,(    0),(    1),0,1,(   1)),(1,1,(    1),(    0),0,0,(   0)))   2.  (A+C)(B+C)=AB+C    determinant ((A,B,C,(A+C),(B+C),((A+C)(B+C)),(AB),(AB+C)),(0,0,0,(   0),(   0),(          0),(  0),(    0)),(0,0,1,(   1),(   1),(          1),(  0),(    1)),(0,1,0,(   0),(   1),(          0),(  0),(    0)),(0,1,1,(   1),(   1),(          1),(  0),(    1)),(1,0,0,(   1),(   0),(          0),(  0),(    0)),(1,0,1,(   1),(   1),(          1),(  0),(    1)),(1,1,0,(   1),(   1),(          1),(  1),(    1)),(1,1,1,(   1),(    1),(          1),(  1),(    1)))

$$\mathrm{1}. \\ $$$$\overline {\mathrm{A}+\mathrm{B}}=\overset{−} {\mathrm{A}}\centerdot\overline {\mathrm{B}} \\ $$$$\begin{array}{|c|c|c|c|c|}{\mathrm{A}}&\hline{\mathrm{B}}&\hline{\mathrm{A}+\mathrm{B}}&\hline{\overline {\mathrm{A}+\mathrm{B}}}&\hline{\overset{−} {\mathrm{A}}}&\hline{\overset{−} {\mathrm{B}}}&\hline{\overset{−} {\mathrm{A}}\centerdot\overline {\mathrm{B}}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{0}}\\\hline\end{array}\: \\ $$$$\overline {\mathrm{A}\centerdot\mathrm{B}}=\overset{−} {\mathrm{A}}+\overline {\mathrm{B}} \\ $$$$\begin{array}{|c|c|c|c|c|}{\mathrm{A}}&\hline{\mathrm{B}}&\hline{\mathrm{A}\centerdot\mathrm{B}}&\hline{\overline {\mathrm{A}\centerdot\mathrm{B}}}&\hline{\overset{−} {\mathrm{A}}}&\hline{\overset{−} {\mathrm{B}}}&\hline{\overset{−} {\mathrm{A}}+\overline {\mathrm{B}}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{1}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{0}}\\\hline\end{array}\: \\ $$$$\mathrm{2}. \\ $$$$\left(\mathrm{A}+\mathrm{C}\right)\left(\mathrm{B}+\mathrm{C}\right)=\mathrm{AB}+\mathrm{C}\: \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|}{\mathrm{A}}&\hline{\mathrm{B}}&\hline{\mathrm{C}}&\hline{\mathrm{A}+\mathrm{C}}&\hline{\mathrm{B}+\mathrm{C}}&\hline{\left(\mathrm{A}+\mathrm{C}\right)\left(\mathrm{B}+\mathrm{C}\right)}&\hline{\mathrm{AB}}&\hline{\mathrm{AB}+\mathrm{C}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{0}}&\hline{\:\:\:\mathrm{0}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{0}}&\hline{\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{0}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{0}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{0}}&\hline{\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{0}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\mathrm{0}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{0}}&\hline{\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\:\:\mathrm{0}}&\hline{\:\:\:\:\mathrm{1}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{1}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\:\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{1}}&\hline{\:\:\:\:\:\:\:\:\:\:\mathrm{1}}&\hline{\:\:\mathrm{1}}&\hline{\:\:\:\:\mathrm{1}}\\\hline\end{array} \\ $$

Commented by Shrinava last updated on 19/Apr/22

perfect thankyou sir

$$\mathrm{perfect}\:\mathrm{thankyou}\:\boldsymbol{\mathrm{sir}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com