Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 170872 by mathlove last updated on 02/Jun/22

Answered by aleks041103 last updated on 04/Jun/22

Π_(k=1) ^(n−1) sin(((kπ)/n))=Π_(k=1) ^(n−1) ((e^((kπi)/n) −e^(−((kπi)/n)) )/(2i))=  =(((Π_(k=1) ^(n−1) e^((kπi)/n) )(Π_(k=1) ^(n−1) (1−e^(−((2kπi)/n)) )))/((2i)^(n−1)  ))=  =(e^(((πi)/n)Σ_(k=1) ^(n−1) k) /(2^(n−1) (e^((πi)/2) )^(n−1) ))Π_(k=1) ^(n−1) (1−e^(−((2kπi)/n)) )=  =(e^(((πi)/n) ((n(n−1))/2)−(((n−1)πi)/2)) /2^(n−1) )Π_(k=1) ^(n−1) (1−e^(−((2kπi)/n)) )=  =(1/2^(n−1) )f(1)  where f(x)=Π_(k=1) ^(n−1) (x−e^(−((2kπi)/n)) )  f(x)=Π_(k=1) ^(n−1) (x−e^(−((2kπi)/n)) )=((Π_(k=0) ^(n−1) (x−e^(−((2kπi)/n)) ))/(x−1))  but e^(−((2kπi)/n))  for k=0,...,(n−1) are the   n−th roots of unity.  ⇒Π_(k=0) ^(n−1) (x−e^(−((2kπi)/n)) )=x^n −1  ⇒f(x)=((x^n −1)/(x−1))=1+x+x^2 +...+x^(n−1)   f(1)=1+1+...+1=n  ⇒Π_(k=1) ^(n−1) sin(((kπ)/n))=(n/2^(n−1) )

$$\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{sin}\left(\frac{{k}\pi}{{n}}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\frac{{e}^{\frac{{k}\pi{i}}{{n}}} −{e}^{−\frac{{k}\pi{i}}{{n}}} }{\mathrm{2}{i}}= \\ $$$$=\frac{\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{e}^{\frac{{k}\pi{i}}{{n}}} \right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right)\right)}{\left(\mathrm{2}{i}\right)^{{n}−\mathrm{1}} \:}= \\ $$$$=\frac{{e}^{\frac{\pi{i}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{k}} }{\mathrm{2}^{{n}−\mathrm{1}} \left({e}^{\frac{\pi{i}}{\mathrm{2}}} \right)^{{n}−\mathrm{1}} }\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right)= \\ $$$$=\frac{{e}^{\frac{\pi{i}}{{n}}\:\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}−\frac{\left({n}−\mathrm{1}\right)\pi{i}}{\mathrm{2}}} }{\mathrm{2}^{{n}−\mathrm{1}} }\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }{f}\left(\mathrm{1}\right) \\ $$$${where}\:{f}\left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right) \\ $$$${f}\left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right)=\frac{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right)}{{x}−\mathrm{1}} \\ $$$${but}\:{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \:{for}\:{k}=\mathrm{0},...,\left({n}−\mathrm{1}\right)\:{are}\:{the}\: \\ $$$${n}−{th}\:{roots}\:{of}\:{unity}. \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−{e}^{−\frac{\mathrm{2}{k}\pi{i}}{{n}}} \right)={x}^{{n}} −\mathrm{1} \\ $$$$\Rightarrow{f}\left({x}\right)=\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}=\mathrm{1}+{x}+{x}^{\mathrm{2}} +...+{x}^{{n}−\mathrm{1}} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{1}+...+\mathrm{1}={n} \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{sin}\left(\frac{{k}\pi}{{n}}\right)=\frac{{n}}{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com