Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 172555 by cortano1 last updated on 28/Jun/22

      ∫_(1/5) ^5  ((arctan (x))/x) dx =?

$$\:\:\:\:\:\:\underset{\mathrm{1}/\mathrm{5}} {\overset{\mathrm{5}} {\int}}\:\frac{\mathrm{arctan}\:\left({x}\right)}{{x}}\:{dx}\:=? \\ $$

Commented by greougoury555 last updated on 28/Jun/22

 = ln (√5^π ) = (π/2) ln 5

$$\:=\:\mathrm{ln}\:\sqrt{\mathrm{5}^{\pi} }\:=\:\frac{\pi}{\mathrm{2}}\:\mathrm{ln}\:\mathrm{5} \\ $$

Commented by cortano1 last updated on 29/Jun/22

Commented by shikaridwan last updated on 29/Jun/22

Generally ∫_(1/a) ^a ((tan^(−1) x)/x)dx=(π/2)ln (a)

$${Generally}\:\int_{\mathrm{1}/{a}} ^{{a}} \frac{\mathrm{tan}^{−\mathrm{1}} {x}}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\left({a}\right) \\ $$

Answered by Mathspace last updated on 28/Jun/22

Υ=∫_(1/5) ^5 ((arctanx)/x)dx  Υ=_(x=(1/t))   ∫_5 ^(1/5) ((−arctan(t))/(1/t))(−(dt/t^2 ))  =−∫_(1/5) ^5   ((arctant)/t)dt=−Υ ⇒  2Υ=0 ⇒Υ=0

$$\Upsilon=\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{{arctanx}}{{x}}{dx} \\ $$$$\Upsilon=_{{x}=\frac{\mathrm{1}}{{t}}} \:\:\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{−{arctan}\left({t}\right)}{\frac{\mathrm{1}}{{t}}}\left(−\frac{{dt}}{{t}^{\mathrm{2}} }\right) \\ $$$$=−\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \:\:\frac{{arctant}}{{t}}{dt}=−\Upsilon\:\Rightarrow \\ $$$$\mathrm{2}\Upsilon=\mathrm{0}\:\Rightarrow\Upsilon=\mathrm{0} \\ $$

Commented by cortano1 last updated on 29/Jun/22

wrong

$${wrong} \\ $$

Commented by cortano1 last updated on 29/Jun/22

Answered by Ar Brandon last updated on 29/Jun/22

∫_5 ^(1/5) ((arctanx)/x)dx     =[lnx∙arctanx]_5 ^(1/5) −∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx     =−ln5(arctan((1/5))+arctan(5))−∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx  I=∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx , x=(1/t) ⇒dx=−(1/t^2 )dt  I=∫_(1/5) ^5 ((lnt)/(1+(1/t^2 )))∙(1/t^2 )dt=∫_(1/5) ^5 ((lnt)/(1+t^2 ))dt=−∫_5 ^(1/5) ((lnt)/(1+t^2 ))dt  2I=∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx−∫_5 ^(1/5) ((lnt)/(1+t^2 ))dt=0 ⇒I=0  ⇒∫_5 ^(1/5) ((arctanx)/x)dx=−ln5(arctan((1/5))+arctan(5))=−(π/2)ln5

$$\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{arctan}{x}}{{x}}{dx} \\ $$$$\:\:\:=\left[\mathrm{ln}{x}\centerdot\mathrm{arctan}{x}\right]_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} −\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:=−\mathrm{ln5}\left(\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)+\mathrm{arctan}\left(\mathrm{5}\right)\right)−\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${I}=\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:,\:{x}=\frac{\mathrm{1}}{{t}}\:\Rightarrow{dx}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$${I}=\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{\mathrm{ln}{t}}{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}\centerdot\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt}=\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=−\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}−\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\mathrm{0}\:\Rightarrow{I}=\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{arctan}{x}}{{x}}{dx}=−\mathrm{ln5}\left(\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)+\mathrm{arctan}\left(\mathrm{5}\right)\right)=−\frac{\pi}{\mathrm{2}}\mathrm{ln5} \\ $$

Commented by shikaridwan last updated on 29/Jun/22

  🥲.

$$ \\ $$🥲.

Commented by shikaridwan last updated on 29/Jun/22

hey!

$${hey}! \\ $$

Commented by Ar Brandon last updated on 29/Jun/22

Hey bro �� Are you back for real? I missed you so much ��

Commented by Ar Brandon last updated on 29/Jun/22

I tried reaching you inbox but couldn't.

Commented by Rasheed.Sindhi last updated on 29/Jun/22

Happy to see you both meeting in the forum once again! 🌷🌺🌹🥀

Happy to see you both meeting in the forum once again! 🌷🌺🌹🥀

Commented by Ar Brandon last updated on 29/Jun/22

Thanks Sir��

Answered by CElcedricjunior last updated on 01/Jul/22

∫_(1/5) ^5 ((arctanx)/x)dx=k  posons  { ((u=arctanx)),((v′=(1/x))) :}=> { ((u′=(1/(1+x^2 )))),((v=ln(x))) :}  =[arctanx×lmx]_(1/5) ^5 −∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx  =ln(5)(arctan(5)+arctan((1/5)))−∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx  posonsM=∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx=?  posons x=(1/t)=>dx=−(1/t^2 )dt  qd: { ((x−>5)),((x−>(1/5))) :}=> { ((t−>(1/5))),((t→5)) :}  =∫_5 ^(1/5) −((ln((1/t)))/(1+(1/t^2 )))×(1/t^2 )dt  =−∫_(1/5) ^5 ((lnt)/(1+t^2 ))dt  =>∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx=0  =>∫_(1/5) ^5 ((arctanx)/x)dx=ln5(arctan5+arctan((1/5)))  or ∀x∈R^∗  on a  arctan(x)+arctan((1/x))=(𝛑/2)  =>∫_(1/5_ ) ^5 ((arctanx)/(1+x^2 ))dx=(𝛑/2)ln5  .........Le ce^� le^� bre cedric junior..............

$$\int_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} \frac{\boldsymbol{{arctanx}}}{\boldsymbol{{x}}}\boldsymbol{{dx}}=\boldsymbol{{k}} \\ $$$$\boldsymbol{{posons}}\:\begin{cases}{\boldsymbol{{u}}=\boldsymbol{{arctanx}}}\\{\boldsymbol{{v}}'=\frac{\mathrm{1}}{\boldsymbol{{x}}}}\end{cases}=>\begin{cases}{\boldsymbol{{u}}'=\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}\\{\boldsymbol{{v}}=\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)}\end{cases} \\ $$$$=\left[\boldsymbol{{arctanx}}×\boldsymbol{{lmx}}\right]_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} −\int_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}} \\ $$$$=\boldsymbol{\mathrm{ln}}\left(\mathrm{5}\right)\left(\boldsymbol{\mathrm{arctan}}\left(\mathrm{5}\right)+\boldsymbol{\mathrm{arctan}}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)\right)−\int_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\mathrm{posonsM}}=\int_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{posons}}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}}=>\boldsymbol{\mathrm{dx}}=−\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\boldsymbol{\mathrm{dt}} \\ $$$$\boldsymbol{\mathrm{qd}}:\begin{cases}{\boldsymbol{\mathrm{x}}−>\mathrm{5}}\\{\boldsymbol{\mathrm{x}}−>\frac{\mathrm{1}}{\mathrm{5}}}\end{cases}=>\begin{cases}{\boldsymbol{\mathrm{t}}−>\frac{\mathrm{1}}{\mathrm{5}}}\\{\boldsymbol{\mathrm{t}}\rightarrow\mathrm{5}}\end{cases} \\ $$$$=\int_{\mathrm{5}} ^{\mathrm{1}/\mathrm{5}} −\frac{\boldsymbol{\mathrm{ln}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}}\right)}{\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}×\frac{\mathrm{1}}{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\boldsymbol{\mathrm{dt}} \\ $$$$=−\int_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} \frac{\boldsymbol{\mathrm{lnt}}}{\mathrm{1}+\boldsymbol{\mathrm{t}}^{\mathrm{2}} }\boldsymbol{\mathrm{dt}} \\ $$$$=>\int_{\mathrm{1}/\mathrm{5}} ^{\mathrm{5}} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=\mathrm{0} \\ $$$$=>\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{\boldsymbol{{arctanx}}}{\boldsymbol{{x}}}\boldsymbol{{dx}}=\boldsymbol{{ln}}\mathrm{5}\left(\boldsymbol{{arctan}}\mathrm{5}+\boldsymbol{{arctan}}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)\right) \\ $$$$\boldsymbol{{or}}\:\forall\boldsymbol{{x}}\in\mathbb{R}^{\ast} \:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{a}} \\ $$$$\boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{arctan}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)=\frac{\boldsymbol{\pi}}{\mathrm{2}} \\ $$$$=>\int_{\frac{\mathrm{1}}{\mathrm{5}_{} }} ^{\mathrm{5}} \frac{\boldsymbol{\mathrm{arctanx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{\mathrm{ln}}\mathrm{5} \\ $$$$.........\mathscr{L}\boldsymbol{\mathrm{e}}\:\boldsymbol{\mathrm{c}}\acute {\boldsymbol{\mathrm{e}l}}\grave {\boldsymbol{\mathrm{e}bre}}\:\boldsymbol{\mathrm{cedric}}\:\boldsymbol{\mathrm{junior}}.............. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com