Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 172709 by fabyfb last updated on 30/Jun/22

Answered by Mathspace last updated on 30/Jun/22

L(f(x))=∫_0 ^∞   f(t)e^(−xt) dt  =∫_0 ^∞  (e^(−xt) /(t^2 +a^2 ))dt  =∫_0 ^∞ (∫_0 ^∞   e^(−(t^2 +a^2 )u) du)e^(−xt) dt  =∫_0 ^∞ (∫_0 ^∞  e^(−ut^2 −xt) dt)e^(−a^2 u) du  but∫_0 ^∞  e^(−ut^2 −xt) dt= ∫_0 ^∞  e^(−u(t^2 +2t.(x/u)+(x^2 /u^2 )−(x^2 /u^2 )))  dt  =e^(x^2 /u) ∫_0 ^∞  e^(−u(t+(x/u))^2 )  dt  (t+(x/u)=z)  =e^(x^2 /u) ∫_(x/u) ^(+∞) e^(−uz^2 ) dz   ((√u)z=α)  =(1/( (√u)))e^(x^2 /u) ∫_(x/( (√u))) ^∞ e^(−α^2 )  dα  =(λ_0 /( (√u)))e^(x^2 /u)   erf((x/( (√u)))) ⇒  L(f(x))=λ_o ∫_0 ^∞ ((e^(x^2 /u) /( (√u)))erf((x/( (√u)))))e^(−a^2 u) du  =λ_0 ∫_0 ^∞ (1/( (√u)))erf((x/( (√u))))e^(−a^2 u+(x^2 /u)) du

$${L}\left({f}\left({x}\right)\right)=\int_{\mathrm{0}} ^{\infty} \:\:{f}\left({t}\right){e}^{−{xt}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{xt}} }{{t}^{\mathrm{2}} +{a}^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({t}^{\mathrm{2}} +{a}^{\mathrm{2}} \right){u}} {du}\right){e}^{−{xt}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ut}^{\mathrm{2}} −{xt}} {dt}\right){e}^{−{a}^{\mathrm{2}} {u}} {du} \\ $$$${but}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ut}^{\mathrm{2}} −{xt}} {dt}=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}\left({t}^{\mathrm{2}} +\mathrm{2}{t}.\frac{{x}}{{u}}+\frac{{x}^{\mathrm{2}} }{{u}^{\mathrm{2}} }−\frac{{x}^{\mathrm{2}} }{{u}^{\mathrm{2}} }\right)} \:{dt} \\ $$$$={e}^{\frac{{x}^{\mathrm{2}} }{{u}}} \int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}\left({t}+\frac{{x}}{{u}}\right)^{\mathrm{2}} } \:{dt}\:\:\left({t}+\frac{{x}}{{u}}={z}\right) \\ $$$$={e}^{\frac{{x}^{\mathrm{2}} }{{u}}} \int_{\frac{{x}}{{u}}} ^{+\infty} {e}^{−{uz}^{\mathrm{2}} } {dz}\:\:\:\left(\sqrt{{u}}{z}=\alpha\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{u}}}{e}^{\frac{{x}^{\mathrm{2}} }{{u}}} \int_{\frac{{x}}{\:\sqrt{{u}}}} ^{\infty} {e}^{−\alpha^{\mathrm{2}} } \:{d}\alpha \\ $$$$=\frac{\lambda_{\mathrm{0}} }{\:\sqrt{{u}}}{e}^{\frac{{x}^{\mathrm{2}} }{{u}}} \:\:{erf}\left(\frac{{x}}{\:\sqrt{{u}}}\right)\:\Rightarrow \\ $$$${L}\left({f}\left({x}\right)\right)=\lambda_{{o}} \int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{\frac{{x}^{\mathrm{2}} }{{u}}} }{\:\sqrt{{u}}}{erf}\left(\frac{{x}}{\:\sqrt{{u}}}\right)\right){e}^{−{a}^{\mathrm{2}} {u}} {du} \\ $$$$=\lambda_{\mathrm{0}} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\:\sqrt{{u}}}{erf}\left(\frac{{x}}{\:\sqrt{{u}}}\right){e}^{−{a}^{\mathrm{2}} {u}+\frac{{x}^{\mathrm{2}} }{{u}}} {du} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com