Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 173132 by alcohol last updated on 07/Jul/22

U_n  = ((((−4)^(n+1) −1)/(1−(−4)^n )))U_(n−1)  with U_0 =1  find U_(n )  in terms of n

$${U}_{{n}} \:=\:\left(\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }\right){U}_{{n}−\mathrm{1}} \:{with}\:{U}_{\mathrm{0}} =\mathrm{1} \\ $$$${find}\:{U}_{{n}\:} \:{in}\:{terms}\:{of}\:{n}\:\: \\ $$

Commented by kaivan.ahmadi last updated on 07/Jul/22

we have (u_n /u_(n−1) )=(((−4)^(n+1) −1)/(1−(−4)^n ))  on the other hand  u_1 =(((16−1)/(1+4)))1=3  u_2 =(((−64−1)/(1−16)))3=13  u_3 =(((256−1)/(1+64)))13=51  u_4 =(((−1024−1)/(1−256)))51=205   determinant (((n          1                   2                   3                           4   )),((       4×1−1       4×3+1     4×13−1      4×51+1 )),((u_n        3                   13                  51                       205)))  so u_n =4u_(n−1) +(−1)^n   ⇒(u_n /u_(n−1) )=4+(((−1)^n )/u_(n−1) )⇒(((−4)^(n+1) −1)/(1−(−4)^n ))=4+(((−1)^n )/u_(n−1) )  ⇒(((−4)^(n+1) −1)/(1−(−4)^n ))−4=(((−1)^n )/u_(n−1) )⇒  (((−4)^(n+1) −1−4−(−4)^(n+1) )/(1−(−4)^n ))=(((−1)^n )/u_(n−1) )  ⇒((−5)/(1−(−4)^n ))=(((−1)^n )/u_(n−1) )⇒u_(n−1) =(((−1)^n [(−4)^n −1])/5)  replace n with n+1  u_n =(((−1)^(n+1) [(−4)^(n+1) −1])/5)

$${we}\:{have}\:\frac{{u}_{{n}} }{{u}_{{n}−\mathrm{1}} }=\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} } \\ $$$${on}\:{the}\:{other}\:{hand} \\ $$$${u}_{\mathrm{1}} =\left(\frac{\mathrm{16}−\mathrm{1}}{\mathrm{1}+\mathrm{4}}\right)\mathrm{1}=\mathrm{3} \\ $$$${u}_{\mathrm{2}} =\left(\frac{−\mathrm{64}−\mathrm{1}}{\mathrm{1}−\mathrm{16}}\right)\mathrm{3}=\mathrm{13} \\ $$$${u}_{\mathrm{3}} =\left(\frac{\mathrm{256}−\mathrm{1}}{\mathrm{1}+\mathrm{64}}\right)\mathrm{13}=\mathrm{51} \\ $$$${u}_{\mathrm{4}} =\left(\frac{−\mathrm{1024}−\mathrm{1}}{\mathrm{1}−\mathrm{256}}\right)\mathrm{51}=\mathrm{205} \\ $$$$\begin{array}{|c|c|c|}{{n}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:}\\{\:\:\:\:\:\:\:\mathrm{4}×\mathrm{1}−\mathrm{1}\:\:\:\:\:\:\:\mathrm{4}×\mathrm{3}+\mathrm{1}\:\:\:\:\:\mathrm{4}×\mathrm{13}−\mathrm{1}\:\:\:\:\:\:\mathrm{4}×\mathrm{51}+\mathrm{1}\:}\\{{u}_{{n}} \:\:\:\:\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{13}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{51}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{205}}\\\hline\end{array} \\ $$$${so}\:{u}_{{n}} =\mathrm{4}{u}_{{n}−\mathrm{1}} +\left(−\mathrm{1}\right)^{{n}} \\ $$$$\Rightarrow\frac{{u}_{{n}} }{{u}_{{n}−\mathrm{1}} }=\mathrm{4}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{u}_{{n}−\mathrm{1}} }\Rightarrow\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }=\mathrm{4}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{u}_{{n}−\mathrm{1}} } \\ $$$$\Rightarrow\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }−\mathrm{4}=\frac{\left(−\mathrm{1}\right)^{{n}} }{{u}_{{n}−\mathrm{1}} }\Rightarrow \\ $$$$\frac{\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}−\mathrm{4}−\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} }{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }=\frac{\left(−\mathrm{1}\right)^{{n}} }{{u}_{{n}−\mathrm{1}} } \\ $$$$\Rightarrow\frac{−\mathrm{5}}{\mathrm{1}−\left(−\mathrm{4}\right)^{{n}} }=\frac{\left(−\mathrm{1}\right)^{{n}} }{{u}_{{n}−\mathrm{1}} }\Rightarrow{u}_{{n}−\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{{n}} \left[\left(−\mathrm{4}\right)^{{n}} −\mathrm{1}\right]}{\mathrm{5}} \\ $$$${replace}\:{n}\:{with}\:{n}+\mathrm{1} \\ $$$${u}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \left[\left(−\mathrm{4}\right)^{{n}+\mathrm{1}} −\mathrm{1}\right]}{\mathrm{5}} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 07/Jul/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by kaivan.ahmadi last updated on 07/Jul/22

thank you so much

$${thank}\:{you}\:{so}\:{much} \\ $$

Commented by mr W last updated on 06/Jan/23

thanks sir!  your answer is correct, but solution  is not mathematically strict.  you calculated some values for a_n :  a_1 =3, a_2 =13, a_3 =51, a_4 =205,  and then say u_n =4u_(n−1) +(−1)^n .  this method is not mathematically  strict. it′s sometimes a matter of  luck that we “guess” the right   answer. a famous example:  a_1 =1, a_2 =2, a_3 =4, a_4 =8, a_5 =16, ...  it′s the largest number of portions  of a circle which can be divided by n  points on the circle. can we say from  these values that a_n =2^(n−1) ?  unfortunately no! even it delivers the  correct values for the first 5 cases.  the correct formula is a_n =C_4 ^n +C_2 ^n +1.  this example shows how dangerous  it is when we just look at some  first values and then guess a  general formula for the n^(th)  term.  if you are interested, you may read  more about this example in Q180457.

$${thanks}\:{sir}! \\ $$$${your}\:{answer}\:{is}\:{correct},\:{but}\:{solution} \\ $$$${is}\:{not}\:{mathematically}\:{strict}. \\ $$$${you}\:{calculated}\:{some}\:{values}\:{for}\:{a}_{{n}} : \\ $$$${a}_{\mathrm{1}} =\mathrm{3},\:{a}_{\mathrm{2}} =\mathrm{13},\:{a}_{\mathrm{3}} =\mathrm{51},\:{a}_{\mathrm{4}} =\mathrm{205}, \\ $$$${and}\:{then}\:{say}\:{u}_{{n}} =\mathrm{4}{u}_{{n}−\mathrm{1}} +\left(−\mathrm{1}\right)^{{n}} . \\ $$$${this}\:{method}\:{is}\:{not}\:{mathematically} \\ $$$${strict}.\:{it}'{s}\:{sometimes}\:{a}\:{matter}\:{of} \\ $$$${luck}\:{that}\:{we}\:``{guess}''\:{the}\:{right}\: \\ $$$${answer}.\:{a}\:{famous}\:{example}: \\ $$$${a}_{\mathrm{1}} =\mathrm{1},\:{a}_{\mathrm{2}} =\mathrm{2},\:{a}_{\mathrm{3}} =\mathrm{4},\:{a}_{\mathrm{4}} =\mathrm{8},\:{a}_{\mathrm{5}} =\mathrm{16},\:... \\ $$$${it}'{s}\:{the}\:{largest}\:{number}\:{of}\:{portions} \\ $$$${of}\:{a}\:{circle}\:{which}\:{can}\:{be}\:{divided}\:{by}\:{n} \\ $$$${points}\:{on}\:{the}\:{circle}.\:{can}\:{we}\:{say}\:{from} \\ $$$${these}\:{values}\:{that}\:{a}_{{n}} =\mathrm{2}^{{n}−\mathrm{1}} ? \\ $$$${unfortunately}\:{no}!\:{even}\:{it}\:{delivers}\:{the} \\ $$$${correct}\:{values}\:{for}\:{the}\:{first}\:\mathrm{5}\:{cases}. \\ $$$${the}\:{correct}\:{formula}\:{is}\:{a}_{{n}} ={C}_{\mathrm{4}} ^{{n}} +{C}_{\mathrm{2}} ^{{n}} +\mathrm{1}. \\ $$$${this}\:{example}\:{shows}\:{how}\:{dangerous} \\ $$$${it}\:{is}\:{when}\:{we}\:{just}\:{look}\:{at}\:{some} \\ $$$${first}\:{values}\:{and}\:{then}\:{guess}\:{a} \\ $$$${general}\:{formula}\:{for}\:{the}\:{n}^{{th}} \:{term}. \\ $$$${if}\:{you}\:{are}\:{interested},\:{you}\:{may}\:{read} \\ $$$${more}\:{about}\:{this}\:{example}\:{in}\:{Q}\mathrm{180457}. \\ $$

Commented by mr W last updated on 06/Jan/23

a mathematically strict solution   for this question see Q184401.

$${a}\:{mathematically}\:{strict}\:{solution}\: \\ $$$${for}\:{this}\:{question}\:{see}\:{Q}\mathrm{184401}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com