Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 175320 by cortano1 last updated on 27/Aug/22

   { ((4x=2(mod 9))),((7x=2 (mod 13))) :}

$$\:\:\begin{cases}{\mathrm{4}{x}=\mathrm{2}\left({mod}\:\mathrm{9}\right)}\\{\mathrm{7}{x}=\mathrm{2}\:\left({mod}\:\mathrm{13}\right)}\end{cases} \\ $$

Commented by cortano1 last updated on 27/Aug/22

i got x=23 +117k sir

$${i}\:{got}\:{x}=\mathrm{23}\:+\mathrm{117}{k}\:{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 27/Aug/22

sir x=23+117k  doesn′t satisfy  7x≡2(mod 13)

$${sir}\:{x}=\mathrm{23}+\mathrm{117}{k}\:\:{doesn}'{t}\:{satisfy} \\ $$$$\mathrm{7}{x}\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right) \\ $$

Commented by cortano1 last updated on 27/Aug/22

o yes. i am typo 6×13=68

$${o}\:{yes}.\:{i}\:{am}\:{typo}\:\mathrm{6}×\mathrm{13}=\mathrm{68}\: \\ $$

Answered by Rasheed.Sindhi last updated on 27/Aug/22

4x≡2+2×9(mod 9)  x≡5(mod 9)  x=5+9m  7x≡2(mod 13)⇒7(5+9m)≡2(mod 13  35+63m≡2(mod 13)  63m≡−33(mod 13)  m=10  x=5+9m=5+9(10)=95  x=95+k×LCM(9,13) ;k∈Z  x=95+117k ;k∈Z

$$\mathrm{4}{x}\equiv\mathrm{2}+\mathrm{2}×\mathrm{9}\left({mod}\:\mathrm{9}\right) \\ $$$${x}\equiv\mathrm{5}\left({mod}\:\mathrm{9}\right) \\ $$$${x}=\mathrm{5}+\mathrm{9}{m} \\ $$$$\mathrm{7}{x}\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right)\Rightarrow\mathrm{7}\left(\mathrm{5}+\mathrm{9}{m}\right)\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right. \\ $$$$\mathrm{35}+\mathrm{63}{m}\equiv\mathrm{2}\left({mod}\:\mathrm{13}\right) \\ $$$$\mathrm{63}{m}\equiv−\mathrm{33}\left({mod}\:\mathrm{13}\right) \\ $$$${m}=\mathrm{10} \\ $$$${x}=\mathrm{5}+\mathrm{9}{m}=\mathrm{5}+\mathrm{9}\left(\mathrm{10}\right)=\mathrm{95} \\ $$$${x}=\mathrm{95}+{k}×\mathrm{LCM}\left(\mathrm{9},\mathrm{13}\right)\:;{k}\in\mathbb{Z} \\ $$$${x}=\mathrm{95}+\mathrm{117}{k}\:;{k}\in\mathbb{Z} \\ $$

Commented by Tawa11 last updated on 27/Aug/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 27/Aug/22

4x=9k+2  ⇒x=9m+5  7(9m+5)=13h+2  13h−63m=33  ⇒m=13n+10  ⇒x=9(13n+10)+5=117n+95

$$\mathrm{4}{x}=\mathrm{9}{k}+\mathrm{2} \\ $$$$\Rightarrow{x}=\mathrm{9}{m}+\mathrm{5} \\ $$$$\mathrm{7}\left(\mathrm{9}{m}+\mathrm{5}\right)=\mathrm{13}{h}+\mathrm{2} \\ $$$$\mathrm{13}{h}−\mathrm{63}{m}=\mathrm{33} \\ $$$$\Rightarrow{m}=\mathrm{13}{n}+\mathrm{10} \\ $$$$\Rightarrow{x}=\mathrm{9}\left(\mathrm{13}{n}+\mathrm{10}\right)+\mathrm{5}=\mathrm{117}{n}+\mathrm{95} \\ $$

Answered by CElcedricjunior last updated on 28/Aug/22

 { ((4x≡2[9])),((7x≡2[13])) :}=> { ((28x≡14[9])),((14x≡4[13])) :}=> { ((x≡5[9])),((x≡4[13])) :}  =>∃p ;q∈Z/ { ((x=9p+5)),((x=13q+4)) :}  or x=x⇔9p−13q=−1  pgcd(9;13)=1 et 1/1   alors cette equation admet de solution  soit (−3;−2) une solution particuliee  9p−13q=9(−3)−13(−2)  =>9(p+3)=13(q+2)(1)  =>9/13(q+2)or pgcd(9;13)=1  =>9/q+2 ⇔∃k∈Z/ q+2=9k  (2)  =>q=9k−2  (2) dans (1)=>9(p+3)=13(9k)  =>p+3=13k=>p=13k−3  de ce qui prece^� de { ((x=9p+5)),((x=13q+4)) :}   donc   x=9(13k−3)+5=117k−22  ou  x=13(9k−2)+4=117k−22  S_Z ={117k−22/k∈Z}  S_(IN) ={117k−22/k∈]((22)/(117));→[}      .........le ce^� le^� bre cedric junior............

$$\begin{cases}{\mathrm{4}\boldsymbol{{x}}\equiv\mathrm{2}\left[\mathrm{9}\right]}\\{\mathrm{7}\boldsymbol{{x}}\equiv\mathrm{2}\left[\mathrm{13}\right]}\end{cases}=>\begin{cases}{\mathrm{28}\boldsymbol{{x}}\equiv\mathrm{14}\left[\mathrm{9}\right]}\\{\mathrm{14}\boldsymbol{{x}}\equiv\mathrm{4}\left[\mathrm{13}\right]}\end{cases}=>\begin{cases}{\boldsymbol{{x}}\equiv\mathrm{5}\left[\mathrm{9}\right]}\\{\boldsymbol{{x}}\equiv\mathrm{4}\left[\mathrm{13}\right]}\end{cases} \\ $$$$=>\exists\boldsymbol{{p}}\:;\boldsymbol{{q}}\in\mathbb{Z}/\begin{cases}{\boldsymbol{{x}}=\mathrm{9}\boldsymbol{{p}}+\mathrm{5}}\\{\boldsymbol{{x}}=\mathrm{13}\boldsymbol{{q}}+\mathrm{4}}\end{cases} \\ $$$$\boldsymbol{{or}}\:\boldsymbol{{x}}=\boldsymbol{{x}}\Leftrightarrow\mathrm{9}\boldsymbol{{p}}−\mathrm{13}\boldsymbol{{q}}=−\mathrm{1} \\ $$$$\boldsymbol{{pgcd}}\left(\mathrm{9};\mathrm{13}\right)=\mathrm{1}\:{et}\:\mathrm{1}/\mathrm{1} \\ $$$$\:\boldsymbol{{alors}}\:\boldsymbol{{cette}}\:\boldsymbol{{equation}}\:\boldsymbol{{admet}}\:\boldsymbol{{de}}\:\boldsymbol{{solution}} \\ $$$$\boldsymbol{{soit}}\:\left(−\mathrm{3};−\mathrm{2}\right)\:\boldsymbol{{une}}\:\boldsymbol{{solution}}\:\boldsymbol{{particuliee}} \\ $$$$\mathrm{9}\boldsymbol{{p}}−\mathrm{13}\boldsymbol{{q}}=\mathrm{9}\left(−\mathrm{3}\right)−\mathrm{13}\left(−\mathrm{2}\right) \\ $$$$=>\mathrm{9}\left(\boldsymbol{{p}}+\mathrm{3}\right)=\mathrm{13}\left(\boldsymbol{{q}}+\mathrm{2}\right)\left(\mathrm{1}\right) \\ $$$$=>\mathrm{9}/\mathrm{13}\left(\boldsymbol{{q}}+\mathrm{2}\right)\boldsymbol{{or}}\:\boldsymbol{{pgcd}}\left(\mathrm{9};\mathrm{13}\right)=\mathrm{1} \\ $$$$=>\mathrm{9}/\boldsymbol{{q}}+\mathrm{2}\:\Leftrightarrow\exists\boldsymbol{{k}}\in\mathbb{Z}/\:\boldsymbol{{q}}+\mathrm{2}=\mathrm{9}\boldsymbol{{k}}\:\:\left(\mathrm{2}\right) \\ $$$$=>\boldsymbol{{q}}=\mathrm{9}\boldsymbol{{k}}−\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\:\boldsymbol{{dans}}\:\left(\mathrm{1}\right)=>\mathrm{9}\left(\boldsymbol{{p}}+\mathrm{3}\right)=\mathrm{13}\left(\mathrm{9}\boldsymbol{{k}}\right) \\ $$$$=>\boldsymbol{{p}}+\mathrm{3}=\mathrm{13}\boldsymbol{{k}}=>\boldsymbol{{p}}=\mathrm{13}\boldsymbol{{k}}−\mathrm{3} \\ $$$$\boldsymbol{{de}}\:\boldsymbol{{ce}}\:\boldsymbol{{qui}}\:\boldsymbol{{prec}}\grave {\boldsymbol{{e}de\begin{cases}{\boldsymbol{{x}}=\mathrm{9}\boldsymbol{{p}}+\mathrm{5}}\\{\boldsymbol{{x}}=\mathrm{13}\boldsymbol{{q}}+\mathrm{4}}\end{cases}}}\: \\ $$$$\boldsymbol{{donc}}\: \\ $$$$\boldsymbol{{x}}=\mathrm{9}\left(\mathrm{13}\boldsymbol{{k}}−\mathrm{3}\right)+\mathrm{5}=\mathrm{117}\boldsymbol{{k}}−\mathrm{22} \\ $$$$\boldsymbol{{ou}} \\ $$$$\boldsymbol{{x}}=\mathrm{13}\left(\mathrm{9}\boldsymbol{{k}}−\mathrm{2}\right)+\mathrm{4}=\mathrm{117}\boldsymbol{{k}}−\mathrm{22} \\ $$$$\boldsymbol{{S}}_{\mathbb{Z}} =\left\{\mathrm{117}\boldsymbol{{k}}−\mathrm{22}/\boldsymbol{{k}}\in\mathbb{Z}\right\} \\ $$$${S}_{\boldsymbol{{IN}}} =\left\{\mathrm{117}\boldsymbol{{k}}−\mathrm{22}/\boldsymbol{{k}}\in\right]\frac{\mathrm{22}}{\mathrm{117}};\rightarrow\left[\right\} \\ $$$$\: \\ $$$$\:.........{le}\:{c}\acute {{e}l}\grave {{e}bre}\:{cedric}\:{junior}............ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com