Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 175335 by infinityaction last updated on 27/Aug/22

     solve the inequalities   Q.(1)  ((1+log_a ^2 x)/(1+log_a x))   > 1   ,  0<a<1    Q.(2)       log_x  ((4x+5)/(6−5x))  <  −1

$$\:\:\:\:\:\mathrm{solve}\:\mathrm{the}\:\mathrm{inequalities} \\ $$ $$\:{Q}.\left(\mathrm{1}\right)\:\:\frac{\mathrm{1}+\mathrm{log}_{{a}} ^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{log}_{{a}} {x}}\:\:\:>\:\mathrm{1}\:\:\:,\:\:\mathrm{0}<{a}<\mathrm{1} \\ $$ $$\:\:{Q}.\left(\mathrm{2}\right)\:\:\:\:\:\:\:\mathrm{log}_{{x}} \:\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\:\:<\:\:−\mathrm{1} \\ $$

Answered by blackmamba last updated on 27/Aug/22

(1) x>0       let log _a x=t      ((1+t^2 )/(1+t)) −((1+t)/(1+t)) >0     ((t^2 −t)/(t+1)) >0 ⇒((t(t−1))/(t+1)) >0   −1<t<0 ∨ t>1     −1<log _a x<0 ∨ log _a x>1      log _a ((1/a))<log _a x<log _a 1 ∨ log _a x>log _a a    1<x<(1/a) ∨0< x<a

$$\left(\mathrm{1}\right)\:{x}>\mathrm{0} \\ $$ $$\:\:\:\:\:{let}\:\mathrm{log}\:_{{a}} {x}={t} \\ $$ $$\:\:\:\:\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}}\:−\frac{\mathrm{1}+{t}}{\mathrm{1}+{t}}\:>\mathrm{0}\: \\ $$ $$\:\:\frac{{t}^{\mathrm{2}} −{t}}{{t}+\mathrm{1}}\:>\mathrm{0}\:\Rightarrow\frac{{t}\left({t}−\mathrm{1}\right)}{{t}+\mathrm{1}}\:>\mathrm{0} \\ $$ $$\:−\mathrm{1}<{t}<\mathrm{0}\:\vee\:{t}>\mathrm{1} \\ $$ $$\:\:\:−\mathrm{1}<\mathrm{log}\:_{{a}} {x}<\mathrm{0}\:\vee\:\mathrm{log}\:_{{a}} {x}>\mathrm{1} \\ $$ $$\:\:\:\:\mathrm{log}\:_{{a}} \left(\frac{\mathrm{1}}{{a}}\right)<\mathrm{log}\:_{{a}} {x}<\mathrm{log}\:_{{a}} \mathrm{1}\:\vee\:\mathrm{log}\:_{{a}} {x}>\mathrm{log}\:_{{a}} {a} \\ $$ $$\:\:\mathrm{1}<{x}<\frac{\mathrm{1}}{{a}}\:\vee\mathrm{0}<\:{x}<{a}\: \\ $$

Commented byinfinityaction last updated on 27/Aug/22

thanks

$${thanks} \\ $$

Answered by mahdipoor last updated on 27/Aug/22

2: if a<b ⇒  { ((c^a <c^b    if  c≥1)),((c^a >c^b    if  0<c<1)) :}  ((4x+5)/(6−5x))>0⇒x∈(((−5)/4),(6/5))  (iii)  ⇒⇒I:   0<x<1 (i)  x^∧ (log_x ((4x+5)/(6−5x))) > x^∧ (−1) ⇒((4x+5)/(6−5x))>(1/x) ⇒   4x^2 +10x−6>0 ⇒x∈R−[−3,(1/2)]   (ii)  i∩ii∩iii=0.5<x<1  ⇒⇒II:  1≤x   (i)  x^∧ (log_x ((4x+5)/(6−5x))) ≤ x^∧ (−1) ⇒((4x+5)/(6−5x))≤(1/x) ⇒   4x^2 +10x−6≤0 ⇒x∈[−3,(1/2)]   (ii)  i∩ii∩iii=∄  I∩II= 0.5<x<1

$$\mathrm{2}:\:{if}\:{a}<{b}\:\Rightarrow\:\begin{cases}{{c}^{{a}} <{c}^{{b}} \:\:\:{if}\:\:{c}\geqslant\mathrm{1}}\\{{c}^{{a}} >{c}^{{b}} \:\:\:{if}\:\:\mathrm{0}<{c}<\mathrm{1}}\end{cases} \\ $$ $$\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}>\mathrm{0}\Rightarrow{x}\in\left(\frac{−\mathrm{5}}{\mathrm{4}},\frac{\mathrm{6}}{\mathrm{5}}\right)\:\:\left({iii}\right) \\ $$ $$\Rightarrow\Rightarrow\mathrm{I}:\:\:\:\mathrm{0}<{x}<\mathrm{1}\:\left({i}\right) \\ $$ $${x}^{\wedge} \left({log}_{{x}} \frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\right)\:>\:{x}^{\wedge} \left(−\mathrm{1}\right)\:\Rightarrow\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}>\frac{\mathrm{1}}{{x}}\:\Rightarrow\: \\ $$ $$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{6}>\mathrm{0}\:\Rightarrow{x}\in\mathrm{R}−\left[−\mathrm{3},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:\:\left({ii}\right) \\ $$ $${i}\cap{ii}\cap{iii}=\mathrm{0}.\mathrm{5}<{x}<\mathrm{1} \\ $$ $$\Rightarrow\Rightarrow\mathrm{II}:\:\:\mathrm{1}\leqslant{x}\:\:\:\left({i}\right) \\ $$ $${x}^{\wedge} \left({log}_{{x}} \frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\right)\:\leqslant\:{x}^{\wedge} \left(−\mathrm{1}\right)\:\Rightarrow\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{6}−\mathrm{5}{x}}\leqslant\frac{\mathrm{1}}{{x}}\:\Rightarrow\: \\ $$ $$\mathrm{4}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{6}\leqslant\mathrm{0}\:\Rightarrow{x}\in\left[−\mathrm{3},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:\:\left({ii}\right) \\ $$ $${i}\cap{ii}\cap{iii}=\nexists \\ $$ $$\mathrm{I}\cap\mathrm{II}=\:\mathrm{0}.\mathrm{5}<{x}<\mathrm{1} \\ $$

Commented byinfinityaction last updated on 27/Aug/22

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com