Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17645 by Tinkutara last updated on 09/Jul/17

Suppose that the point M lying in the  interior of the parallelogram ABCD,  two parallels to AB and AD are drawn,  intersecting the sides of ABCD at the  points P, Q, R, S (See Figure). Prove  that M lies on the diagonal AC if and  only if [MRDS] = [MPBQ].

$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{the}\:\mathrm{point}\:{M}\:\mathrm{lying}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interior}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parallelogram}\:{ABCD}, \\ $$$$\mathrm{two}\:\mathrm{parallels}\:\mathrm{to}\:{AB}\:\mathrm{and}\:{AD}\:\mathrm{are}\:\mathrm{drawn}, \\ $$$$\mathrm{intersecting}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:{ABCD}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{points}\:{P},\:{Q},\:{R},\:{S}\:\left(\mathrm{See}\:\mathrm{Figure}\right).\:\mathrm{Prove} \\ $$$$\mathrm{that}\:{M}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{diagonal}\:{AC}\:\mathrm{if}\:\mathrm{and} \\ $$$$\mathrm{only}\:\mathrm{if}\:\left[{MRDS}\right]\:=\:\left[{MPBQ}\right]. \\ $$

Commented by Tinkutara last updated on 09/Jul/17

Answered by alex041103 last updated on 09/Jul/17

FG∥BC∥AD and EH∥AB∥CD  ⇒AGME and MHCF are parallelograms  ⇒S_(AMG) =S_(AME)  and S_(MCH) =S_(MCF)   Also ABCD is parallelogram  ⇒S_(ACD) =S_(ACB)   S_(ACD) =S_(AMC) +S_(DEMF) +S_(AME) +S_(CFM)   and  S_(ACB) =S_(AMG) +S_(BHMG) +S_(CHM) −S_(AMC)   But S_(AMG) =S_(AME)  and S_(MCH) =S_(MCF)   and S_(ACD) =S_(ACB)   ⇒S_(BHMG) =S_(DEMF) +2S_(AMC)    If S_(BHMG) =S_(DEMF)  then S_(AMC) =0  ⇒S_(AMC) =((distance(M to AC)×AC)/2)=0  And AC≠0 then distance(M to AC)=0  ⇒M∈AC

$${FG}\parallel{BC}\parallel{AD}\:{and}\:{EH}\parallel{AB}\parallel{CD} \\ $$$$\Rightarrow{AGME}\:{and}\:{MHCF}\:{are}\:{parallelograms} \\ $$$$\Rightarrow{S}_{{AMG}} ={S}_{{AME}} \:{and}\:{S}_{{MCH}} ={S}_{{MCF}} \\ $$$${Also}\:{ABCD}\:{is}\:{parallelogram} \\ $$$$\Rightarrow{S}_{{ACD}} ={S}_{{ACB}} \\ $$$${S}_{{ACD}} ={S}_{{AMC}} +{S}_{{DEMF}} +{S}_{{AME}} +{S}_{{CFM}} \\ $$$${and} \\ $$$${S}_{{ACB}} ={S}_{{AMG}} +{S}_{{BHMG}} +{S}_{{CHM}} −{S}_{{AMC}} \\ $$$${But}\:{S}_{{AMG}} ={S}_{{AME}} \:{and}\:{S}_{{MCH}} ={S}_{{MCF}} \\ $$$${and}\:{S}_{{ACD}} ={S}_{{ACB}} \\ $$$$\Rightarrow{S}_{{BHMG}} ={S}_{{DEMF}} +\mathrm{2}{S}_{{AMC}} \\ $$$$\:{If}\:{S}_{{BHMG}} ={S}_{{DEMF}} \:{then}\:{S}_{{AMC}} =\mathrm{0} \\ $$$$\Rightarrow{S}_{{AMC}} =\frac{{distance}\left({M}\:{to}\:{AC}\right)×{AC}}{\mathrm{2}}=\mathrm{0} \\ $$$${And}\:{AC}\neq\mathrm{0}\:{then}\:{distance}\left({M}\:{to}\:{AC}\right)=\mathrm{0} \\ $$$$\Rightarrow{M}\in{AC} \\ $$

Commented by alex041103 last updated on 09/Jul/17

Commented by Tinkutara last updated on 09/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by ajfour last updated on 09/Jul/17

Commented by ajfour last updated on 09/Jul/17

Area MRDS=ka^� ×(b^� −mb^� )                            =k(1−m)a^� ×b^�   Area MPBQ=(a^� −ka^� )×mb^�                             =m(1−k)a^� ×b^�    position vector of M :                        r_M ^� = ka^� +mb^�   when the two areas are equal,         k(1−m)=m(1−k)    ⇒         k=m       then    r_M ^� = k(a^� +b^� )     ⇒     M is on AC  then.

$$\mathrm{Area}\:\mathrm{MRDS}=\mathrm{k}\bar {\mathrm{a}}×\left(\bar {\mathrm{b}}−\mathrm{m}\bar {\mathrm{b}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{k}\left(\mathrm{1}−\mathrm{m}\right)\bar {\mathrm{a}}×\bar {\mathrm{b}} \\ $$$$\mathrm{Area}\:\mathrm{MPBQ}=\left(\bar {\mathrm{a}}−\mathrm{k}\bar {\mathrm{a}}\right)×\mathrm{m}\bar {\mathrm{b}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{m}\left(\mathrm{1}−\mathrm{k}\right)\bar {\mathrm{a}}×\bar {\mathrm{b}} \\ $$$$\:\mathrm{position}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{M}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bar {\mathrm{r}}_{\mathrm{M}} =\:\mathrm{k}\bar {\mathrm{a}}+\mathrm{m}\bar {\mathrm{b}} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{two}\:\mathrm{areas}\:\mathrm{are}\:\mathrm{equal}, \\ $$$$\:\:\:\:\:\:\:\mathrm{k}\left(\mathrm{1}−\mathrm{m}\right)=\mathrm{m}\left(\mathrm{1}−\mathrm{k}\right) \\ $$$$\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\mathrm{k}=\mathrm{m}\: \\ $$$$\:\:\:\:\mathrm{then}\:\:\:\:\bar {\mathrm{r}}_{\mathrm{M}} =\:\mathrm{k}\left(\bar {\mathrm{a}}+\bar {\mathrm{b}}\right)\:\:\: \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{M}\:\mathrm{is}\:\mathrm{on}\:\mathrm{AC}\:\:\mathrm{then}. \\ $$

Commented by Tinkutara last updated on 09/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com