Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 176708 by Matica last updated on 25/Sep/22

 a_(n+2) −3a_(n+1) +2a_n =n+3^n    please find a_n

$$\:{a}_{{n}+\mathrm{2}} −\mathrm{3}{a}_{{n}+\mathrm{1}} +\mathrm{2}{a}_{{n}} ={n}+\mathrm{3}^{{n}} \: \\ $$$${please}\:{find}\:{a}_{{n}} \\ $$$$ \\ $$

Answered by mr W last updated on 26/Sep/22

 (a_(n+2) −a_(n+1) )−2(a_(n+1) −a_n )=n+3^n   let b_n =a_(n+1) −a_n    b_(n+1) −2b_n =n+3^n    let b_n =c_n +p+qn+3^n k  b_(n+1) =c_(n+1) +p+q(n+1)+3^(n+1) k  c_(n+1) −2c_n +p+q(n+1)−2p−2qn+3^(n+1) k−3^n k=n+3^n   c_(n+1) −2c_n +q−p−qn+2k3^n =n+3^n   ⇒q=−1  ⇒q−p=0 ⇒p=−1  ⇒2k=1 ⇒k=(1/2)  ⇒b_n =c_n −1−n+(3^n /2)  ⇒c_(n+1) −2c_n =0  ⇒c_n =2c_(n−1) =2^2 c_(n−2) =...=2^n c_0   c_0 =b_0 +1+0+(3^0 /2)=b_0 +(3/2)=a_1 −a_0 +(3/2)  ⇒b_n =a_(n+1) −a_n =2^n c_0 −1−n+(3^n /2)  Σ_(n=1) ^n (a_(n+1) −a_n )=Σ_(n=1) ^n (2^n c_0 −1−n+(3^n /2))  a_(n+1) −a_1 =((2c_0 (2^n −1))/(2−1))−n−((n(n+1))/2)+((3(3^n −1))/(2(3−1)))  a_(n+1) =a_1 +2c_0 (2^n −1)−((n(n+3))/2)+((3^(n+1) −3)/4)  ⇒a_n =a_1 +(a_1 −a_0 +(3/2))(2^n −2)−(((n−1)(n+2))/2)+((3^n −3)/4)

$$\:\left({a}_{{n}+\mathrm{2}} −{a}_{{n}+\mathrm{1}} \right)−\mathrm{2}\left({a}_{{n}+\mathrm{1}} −{a}_{{n}} \right)={n}+\mathrm{3}^{{n}} \\ $$$${let}\:{b}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} \: \\ $$$${b}_{{n}+\mathrm{1}} −\mathrm{2}{b}_{{n}} ={n}+\mathrm{3}^{{n}} \: \\ $$$${let}\:{b}_{{n}} ={c}_{{n}} +{p}+{qn}+\mathrm{3}^{{n}} {k} \\ $$$${b}_{{n}+\mathrm{1}} ={c}_{{n}+\mathrm{1}} +{p}+{q}\left({n}+\mathrm{1}\right)+\mathrm{3}^{{n}+\mathrm{1}} {k} \\ $$$${c}_{{n}+\mathrm{1}} −\mathrm{2}{c}_{{n}} +{p}+{q}\left({n}+\mathrm{1}\right)−\mathrm{2}{p}−\mathrm{2}{qn}+\mathrm{3}^{{n}+\mathrm{1}} {k}−\mathrm{3}^{{n}} {k}={n}+\mathrm{3}^{{n}} \\ $$$${c}_{{n}+\mathrm{1}} −\mathrm{2}{c}_{{n}} +{q}−{p}−{qn}+\mathrm{2}{k}\mathrm{3}^{{n}} ={n}+\mathrm{3}^{{n}} \\ $$$$\Rightarrow{q}=−\mathrm{1} \\ $$$$\Rightarrow{q}−{p}=\mathrm{0}\:\Rightarrow{p}=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{k}=\mathrm{1}\:\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{b}_{{n}} ={c}_{{n}} −\mathrm{1}−{n}+\frac{\mathrm{3}^{{n}} }{\mathrm{2}} \\ $$$$\Rightarrow{c}_{{n}+\mathrm{1}} −\mathrm{2}{c}_{{n}} =\mathrm{0} \\ $$$$\Rightarrow{c}_{{n}} =\mathrm{2}{c}_{{n}−\mathrm{1}} =\mathrm{2}^{\mathrm{2}} {c}_{{n}−\mathrm{2}} =...=\mathrm{2}^{{n}} {c}_{\mathrm{0}} \\ $$$${c}_{\mathrm{0}} ={b}_{\mathrm{0}} +\mathrm{1}+\mathrm{0}+\frac{\mathrm{3}^{\mathrm{0}} }{\mathrm{2}}={b}_{\mathrm{0}} +\frac{\mathrm{3}}{\mathrm{2}}={a}_{\mathrm{1}} −{a}_{\mathrm{0}} +\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{b}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} =\mathrm{2}^{{n}} {c}_{\mathrm{0}} −\mathrm{1}−{n}+\frac{\mathrm{3}^{{n}} }{\mathrm{2}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left({a}_{{n}+\mathrm{1}} −{a}_{{n}} \right)=\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}^{{n}} {c}_{\mathrm{0}} −\mathrm{1}−{n}+\frac{\mathrm{3}^{{n}} }{\mathrm{2}}\right) \\ $$$${a}_{{n}+\mathrm{1}} −{a}_{\mathrm{1}} =\frac{\mathrm{2}{c}_{\mathrm{0}} \left(\mathrm{2}^{{n}} −\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}}−{n}−\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+\frac{\mathrm{3}\left(\mathrm{3}^{{n}} −\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{3}−\mathrm{1}\right)} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{\mathrm{1}} +\mathrm{2}{c}_{\mathrm{0}} \left(\mathrm{2}^{{n}} −\mathrm{1}\right)−\frac{{n}\left({n}+\mathrm{3}\right)}{\mathrm{2}}+\frac{\mathrm{3}^{{n}+\mathrm{1}} −\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow{a}_{{n}} ={a}_{\mathrm{1}} +\left({a}_{\mathrm{1}} −{a}_{\mathrm{0}} +\frac{\mathrm{3}}{\mathrm{2}}\right)\left(\mathrm{2}^{{n}} −\mathrm{2}\right)−\frac{\left({n}−\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{2}}+\frac{\mathrm{3}^{{n}} −\mathrm{3}}{\mathrm{4}} \\ $$

Commented by Matica last updated on 26/Sep/22

Thank you very much

$${Thank}\:{you}\:{very}\:{much} \\ $$

Commented by Tawa11 last updated on 25/Sep/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com