Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178054 by Acem last updated on 12/Oct/22

Mr. w wants to distribute n+1 different   prizes  to n friends so that each one gets   at least one prize, how many results   of this process. I hope to be that one gets 2

$${Mr}.\:{w}\:{wants}\:{to}\:{distribute}\:{n}+\mathrm{1}\:{different}\: \\ $$$${prizes}\:\:{to}\:{n}\:{friends}\:{so}\:{that}\:{each}\:{one}\:{gets} \\ $$$$\:{at}\:{least}\:{one}\:{prize},\:{how}\:{many}\:{results} \\ $$$$\:{of}\:{this}\:{process}.\:{I}\:{hope}\:{to}\:{be}\:{that}\:{one}\:{gets}\:\mathrm{2} \\ $$$$ \\ $$

Commented by mr W last updated on 12/Oct/22

wow! i′d like to really give a prize to   each of you!

$${wow}!\:{i}'{d}\:{like}\:{to}\:{really}\:{give}\:{a}\:{prize}\:{to}\: \\ $$$${each}\:{of}\:{you}! \\ $$

Commented by mr W last updated on 12/Oct/22

my answer is ((n(n+1)!)/2).

$${my}\:{answer}\:{is}\:\frac{{n}\left({n}+\mathrm{1}\right)!}{\mathrm{2}}. \\ $$

Commented by Acem last updated on 12/Oct/22

In fact since the (n−1) are so much jealous   i hardly got two.... Thx for the prizes     The work was great! I wish you   continued success

$${In}\:{fact}\:{since}\:{the}\:\left({n}−\mathrm{1}\right)\:{are}\:{so}\:{much}\:{jealous} \\ $$$$\:{i}\:{hardly}\:{got}\:{two}....\:{Thx}\:{for}\:{the}\:{prizes}\: \\ $$$$ \\ $$$${The}\:{work}\:{was}\:{great}!\:{I}\:{wish}\:{you} \\ $$$$\:{continued}\:{success} \\ $$

Answered by aurpeyz last updated on 12/Oct/22

first gift =n options  second gift=n options  third gift=(n−1) options  fourth gift=(n−2) options  fifth gift=(n−3) options  sixth gift=(n−4) options  ...  (n)th gift=(n+1−4)options  (n+1)th gift=(n+2−4)=(n−2) options  ans=n×n×(n−1)×(n−2)×(n−3)×  (n−4)×...×(n−2)    I ended up confused. lol

$${first}\:{gift}\:={n}\:{options} \\ $$$${second}\:{gift}={n}\:{options} \\ $$$${third}\:{gift}=\left({n}−\mathrm{1}\right)\:{options} \\ $$$${fourth}\:{gift}=\left({n}−\mathrm{2}\right)\:{options} \\ $$$${fifth}\:{gift}=\left({n}−\mathrm{3}\right)\:{options} \\ $$$${sixth}\:{gift}=\left({n}−\mathrm{4}\right)\:{options} \\ $$$$... \\ $$$$\left({n}\right){th}\:{gift}=\left({n}+\mathrm{1}−\mathrm{4}\right){options} \\ $$$$\left({n}+\mathrm{1}\right){th}\:{gift}=\left({n}+\mathrm{2}−\mathrm{4}\right)=\left({n}−\mathrm{2}\right)\:{options} \\ $$$${ans}={n}×{n}×\left({n}−\mathrm{1}\right)×\left({n}−\mathrm{2}\right)×\left({n}−\mathrm{3}\right)× \\ $$$$\left({n}−\mathrm{4}\right)×...×\left({n}−\mathrm{2}\right) \\ $$$$ \\ $$$${I}\:{ended}\:{up}\:{confused}.\:{lol} \\ $$$$ \\ $$$$ \\ $$

Commented by Acem last updated on 12/Oct/22

The attempts are excellent even if it was not   true cause it gaves a good figure for solving   problems (:

$${The}\:{attempts}\:{are}\:{excellent}\:{even}\:{if}\:{it}\:{was}\:{not} \\ $$$$\:{true}\:{cause}\:{it}\:{gaves}\:{a}\:{good}\:{figure}\:{for}\:{solving} \\ $$$$\:{problems}\:\left(:\right. \\ $$

Commented by Acem last updated on 12/Oct/22

Let′s try now, There′s one friend_((?))  will   get 2 differents_((?))   prizes  that′s mean we′re in front of two operations   of selection: (2 ways)   Bring 2 diff.priz.  (((And)),((( ×))) ) Select one fr._(to give)                                     (((n+1)),((   2)) ) × n    = (((n+1)n^2 )/2) = NumWays_(2 pr. to 1fr.)      Gifting n friends =   gift_((n−1)pr. to(n−1)fr.)   (((And)),(( (×))) ) gift_(2pr. to 1fr.)      = P_(n−1) ^( n−1)  × NumWays_(2 pr. to 1fr.)    = (((n−1)!)/(0!)) × ((n.n.(n+1))/2)= ((n.n!.(n+1))/2)   = ((n.(n+1)!)/2) ways

$${Let}'{s}\:{try}\:{now},\:{There}'{s}\:\boldsymbol{{one}}\:\boldsymbol{{friend}}_{\left(?\right)} \:{will} \\ $$$$\:{get}\:\mathrm{2}\:\boldsymbol{{differents}}_{\left(?\right)} \:\:{prizes} \\ $$$${that}'{s}\:{mean}\:{we}'{re}\:{in}\:{front}\:{of}\:{two}\:{operations} \\ $$$$\:{of}\:{selection}:\:\left(\mathrm{2}\:{ways}\right) \\ $$$$\:\underline{{Bring}}\:\mathrm{2}\:{diff}.{priz}.\:\begin{pmatrix}{\boldsymbol{{And}}}\\{\left(\:×\right)}\end{pmatrix}\:\underline{{Select}}\:{one}\:{fr}._{{to}\:{give}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\mathrm{2}}\end{pmatrix}\:×\:{n} \\ $$$$\:\:=\:\frac{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }{\mathrm{2}}\:=\:{NumWays}_{\mathrm{2}\:{pr}.\:{to}\:\mathrm{1}{fr}.} \\ $$$$ \\ $$$$\:{Gifting}\:{n}\:{friends}\:= \\ $$$$\:{gift}_{\left({n}−\mathrm{1}\right){pr}.\:{to}\left({n}−\mathrm{1}\right){fr}.} \:\begin{pmatrix}{\boldsymbol{{And}}}\\{\:\left(×\right)}\end{pmatrix}\:{gift}_{\mathrm{2}{pr}.\:{to}\:\mathrm{1}{fr}.} \\ $$$$ \\ $$$$\:=\:{P}_{{n}−\mathrm{1}} ^{\:{n}−\mathrm{1}} \:×\:{NumWays}_{\mathrm{2}\:{pr}.\:{to}\:\mathrm{1}{fr}.} \\ $$$$\:=\:\frac{\left({n}−\mathrm{1}\right)!}{\mathrm{0}!}\:×\:\frac{{n}.{n}.\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\:\frac{{n}.{n}!.\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:=\:\frac{{n}.\left({n}+\mathrm{1}\right)!}{\mathrm{2}}\:{ways} \\ $$$$\: \\ $$

Answered by mr W last updated on 12/Oct/22

method 1:  i take a stranger from the street and  bring him to my n friends. now i have  n+1 “friends”. one of them is a fake  friend. i give a prize to each of them,  there are (n+1)! ways to do that.   since the stranger is not a real friend,  he should give his prize to one of my  real friends. he has n ways to select  a real friend. so i have n(n+1)! ways  to distribute n+1 prizes to n friends.  but since it′s the same whether some  one gets at first the prize A and then   from the stranger the prize B or   whether he gets at first the prize B   and then from the stranger the prize  A. therefore in fact i have only   ((n(n+1)!)/2) different ways.

$${method}\:\mathrm{1}: \\ $$$${i}\:{take}\:{a}\:{stranger}\:{from}\:{the}\:{street}\:{and} \\ $$$${bring}\:{him}\:{to}\:{my}\:{n}\:{friends}.\:{now}\:{i}\:{have} \\ $$$${n}+\mathrm{1}\:``{friends}''.\:{one}\:{of}\:{them}\:{is}\:{a}\:{fake} \\ $$$${friend}.\:{i}\:{give}\:{a}\:{prize}\:{to}\:{each}\:{of}\:{them}, \\ $$$${there}\:{are}\:\left({n}+\mathrm{1}\right)!\:{ways}\:{to}\:{do}\:{that}.\: \\ $$$${since}\:{the}\:{stranger}\:{is}\:{not}\:{a}\:{real}\:{friend}, \\ $$$${he}\:{should}\:{give}\:{his}\:{prize}\:{to}\:{one}\:{of}\:{my} \\ $$$${real}\:{friends}.\:{he}\:{has}\:{n}\:{ways}\:{to}\:{select} \\ $$$${a}\:{real}\:{friend}.\:{so}\:{i}\:{have}\:{n}\left({n}+\mathrm{1}\right)!\:{ways} \\ $$$${to}\:{distribute}\:{n}+\mathrm{1}\:{prizes}\:{to}\:{n}\:{friends}. \\ $$$${but}\:{since}\:{it}'{s}\:{the}\:{same}\:{whether}\:{some} \\ $$$${one}\:{gets}\:{at}\:{first}\:{the}\:{prize}\:{A}\:{and}\:{then}\: \\ $$$${from}\:{the}\:{stranger}\:{the}\:{prize}\:{B}\:{or}\: \\ $$$${whether}\:{he}\:{gets}\:{at}\:{first}\:{the}\:{prize}\:{B}\: \\ $$$${and}\:{then}\:{from}\:{the}\:{stranger}\:{the}\:{prize} \\ $$$${A}.\:{therefore}\:{in}\:{fact}\:{i}\:{have}\:{only}\: \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)!}{\mathrm{2}}\:{different}\:{ways}. \\ $$

Commented by mr W last updated on 12/Oct/22

method 2:  one friend gets 2 prizes. to select this  friend, there are n ways.  he selects 2 from n+1 prizes, there  are C_2 ^(n+1) =(((n+1)n)/2) ways. to distribute  the remaining n−1 prizes among   the n−1 friends, there are (n−1)!   ways.  ⇒n×(((n+1)n)/2)×(n−1)!=((n(n+1)!)/2)

$${method}\:\mathrm{2}: \\ $$$${one}\:{friend}\:{gets}\:\mathrm{2}\:{prizes}.\:{to}\:{select}\:{this} \\ $$$${friend},\:{there}\:{are}\:{n}\:{ways}. \\ $$$${he}\:{selects}\:\mathrm{2}\:{from}\:{n}+\mathrm{1}\:{prizes},\:{there} \\ $$$${are}\:{C}_{\mathrm{2}} ^{{n}+\mathrm{1}} =\frac{\left({n}+\mathrm{1}\right){n}}{\mathrm{2}}\:{ways}.\:{to}\:{distribute} \\ $$$${the}\:{remaining}\:{n}−\mathrm{1}\:{prizes}\:{among}\: \\ $$$${the}\:{n}−\mathrm{1}\:{friends},\:{there}\:{are}\:\left({n}−\mathrm{1}\right)!\: \\ $$$${ways}. \\ $$$$\Rightarrow{n}×\frac{\left({n}+\mathrm{1}\right){n}}{\mathrm{2}}×\left({n}−\mathrm{1}\right)!=\frac{{n}\left({n}+\mathrm{1}\right)!}{\mathrm{2}} \\ $$

Commented by Acem last updated on 12/Oct/22

 The second method is the best! it′s like mine  as the following:    There′s one friend_((?))  will   get 2 differents_((?))   prizes  that′s mean we′re in front of two operations   of selection: (2 ways)   Bring 2 diff.priz.  (((And)),((( ×))) ) Select one fr._(to give)                                     (((n+1)),((   2)) ) × n    = (((n+1)n^2 )/2) = NumWays_(2 pr. to 1fr.)      Gifting n friends =   gift_((n−1)pr. to(n−1)fr.)   (((And)),(( (×))) ) gift_(2pr. to 1fr.)      = P_(n−1) ^( n−1)  × NumWays_(2 pr. to 1fr.)    = (((n−1)!)/(0!)) × ((n.n.(n+1))/2)= ((n.n!.(n+1))/2)   = ((n.(n+1)!)/2) ways

$$\:{The}\:{second}\:{method}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{best}}!\:{it}'{s}\:{like}\:{mine} \\ $$$${as}\:{the}\:{following}: \\ $$$$ \\ $$$${There}'{s}\:\boldsymbol{{one}}\:\boldsymbol{{friend}}_{\left(?\right)} \:{will} \\ $$$$\:{get}\:\mathrm{2}\:\boldsymbol{{differents}}_{\left(?\right)} \:\:{prizes} \\ $$$${that}'{s}\:{mean}\:{we}'{re}\:{in}\:{front}\:{of}\:{two}\:{operations} \\ $$$$\:{of}\:{selection}:\:\left(\mathrm{2}\:{ways}\right) \\ $$$$\:\underline{{Bring}}\:\mathrm{2}\:{diff}.{priz}.\:\begin{pmatrix}{\boldsymbol{{And}}}\\{\left(\:×\right)}\end{pmatrix}\:\underline{{Select}}\:{one}\:{fr}._{{to}\:{give}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{pmatrix}{{n}+\mathrm{1}}\\{\:\:\:\mathrm{2}}\end{pmatrix}\:×\:{n} \\ $$$$\:\:=\:\frac{\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} }{\mathrm{2}}\:=\:{NumWays}_{\mathrm{2}\:{pr}.\:{to}\:\mathrm{1}{fr}.} \\ $$$$ \\ $$$$\:{Gifting}\:{n}\:{friends}\:= \\ $$$$\:{gift}_{\left({n}−\mathrm{1}\right){pr}.\:{to}\left({n}−\mathrm{1}\right){fr}.} \:\begin{pmatrix}{\boldsymbol{{And}}}\\{\:\left(×\right)}\end{pmatrix}\:{gift}_{\mathrm{2}{pr}.\:{to}\:\mathrm{1}{fr}.} \\ $$$$ \\ $$$$\:=\:{P}_{{n}−\mathrm{1}} ^{\:{n}−\mathrm{1}} \:×\:{NumWays}_{\mathrm{2}\:{pr}.\:{to}\:\mathrm{1}{fr}.} \\ $$$$\:=\:\frac{\left({n}−\mathrm{1}\right)!}{\mathrm{0}!}\:×\:\frac{{n}.{n}.\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\:\frac{{n}.{n}!.\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:=\:\frac{{n}.\left({n}+\mathrm{1}\right)!}{\mathrm{2}}\:{ways} \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com