Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 17816 by Tinkutara last updated on 11/Jul/17

A man is standing on top of a building  100 m high. He throws two balls  vertically, one at t = 0 and other after  a time interval (less than 2 seconds).  The later ball is thrown at a velocity of  half the first. The vertical gap between  first and second ball is +15 m at t = 2 s.  The gap is found to remain constant.  Calculate the velocity with which the  balls were thrown and the exact time  interval between their throw.

$$\mathrm{A}\:\mathrm{man}\:\mathrm{is}\:\mathrm{standing}\:\mathrm{on}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building} \\ $$$$\mathrm{100}\:\mathrm{m}\:\mathrm{high}.\:\mathrm{He}\:\mathrm{throws}\:\mathrm{two}\:\mathrm{balls} \\ $$$$\mathrm{vertically},\:\mathrm{one}\:\mathrm{at}\:{t}\:=\:\mathrm{0}\:\mathrm{and}\:\mathrm{other}\:\mathrm{after} \\ $$$$\mathrm{a}\:\mathrm{time}\:\mathrm{interval}\:\left(\mathrm{less}\:\mathrm{than}\:\mathrm{2}\:\mathrm{seconds}\right). \\ $$$$\mathrm{The}\:\mathrm{later}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{at}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{half}\:\mathrm{the}\:\mathrm{first}.\:\mathrm{The}\:\mathrm{vertical}\:\mathrm{gap}\:\mathrm{between} \\ $$$$\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{ball}\:\mathrm{is}\:+\mathrm{15}\:\mathrm{m}\:\mathrm{at}\:{t}\:=\:\mathrm{2}\:\mathrm{s}. \\ $$$$\mathrm{The}\:\mathrm{gap}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{remain}\:\mathrm{constant}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{with}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{balls}\:\mathrm{were}\:\mathrm{thrown}\:\mathrm{and}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{time} \\ $$$$\mathrm{interval}\:\mathrm{between}\:\mathrm{their}\:\mathrm{throw}. \\ $$

Answered by mrW1 last updated on 11/Jul/17

h_1 =v_1 t+(1/2)gt^2   h_2 =(1/2)v_1 (t−Δt)+(1/2)g(t−Δt)^2   Δh=h_1 −h_2 =(1/2)v_1 (t+Δt)+(1/2)g(2t−Δt)Δt  =(1/2)v_1 t+gtΔt+(1/2)v_1 Δt−(1/2)gΔt^2   =t((1/2)v_1 +gΔt)+(1/2)Δt(v_1 −gΔt)  since Δh remains constant  ⇒(1/2)v_1 +gΔt=0  ⇒v_1 =−2gΔt  Δh=(1/2)Δt(v_1 −gΔt)=−(3/2)gΔt  −15=−(3/2)gΔt  ⇒Δt=1 s  ⇒v_1 =−2g×1=−20 m/s (⇈)

$$\mathrm{h}_{\mathrm{1}} =\mathrm{v}_{\mathrm{1}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \\ $$$$\mathrm{h}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{v}_{\mathrm{1}} \left(\mathrm{t}−\Delta\mathrm{t}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}\left(\mathrm{t}−\Delta\mathrm{t}\right)^{\mathrm{2}} \\ $$$$\Delta\mathrm{h}=\mathrm{h}_{\mathrm{1}} −\mathrm{h}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{v}_{\mathrm{1}} \left(\mathrm{t}+\Delta\mathrm{t}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}\left(\mathrm{2t}−\Delta\mathrm{t}\right)\Delta\mathrm{t} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{v}_{\mathrm{1}} \mathrm{t}+\mathrm{gt}\Delta\mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{v}_{\mathrm{1}} \Delta\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}\Delta\mathrm{t}^{\mathrm{2}} \\ $$$$=\mathrm{t}\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{v}_{\mathrm{1}} +\mathrm{g}\Delta\mathrm{t}\right)+\frac{\mathrm{1}}{\mathrm{2}}\Delta\mathrm{t}\left(\mathrm{v}_{\mathrm{1}} −\mathrm{g}\Delta\mathrm{t}\right) \\ $$$$\mathrm{since}\:\Delta\mathrm{h}\:\mathrm{remains}\:\mathrm{constant} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\mathrm{v}_{\mathrm{1}} +\mathrm{g}\Delta\mathrm{t}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{v}_{\mathrm{1}} =−\mathrm{2g}\Delta\mathrm{t} \\ $$$$\Delta\mathrm{h}=\frac{\mathrm{1}}{\mathrm{2}}\Delta\mathrm{t}\left(\mathrm{v}_{\mathrm{1}} −\mathrm{g}\Delta\mathrm{t}\right)=−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{g}\Delta\mathrm{t} \\ $$$$−\mathrm{15}=−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{g}\Delta\mathrm{t} \\ $$$$\Rightarrow\Delta\mathrm{t}=\mathrm{1}\:\mathrm{s} \\ $$$$\Rightarrow\mathrm{v}_{\mathrm{1}} =−\mathrm{2g}×\mathrm{1}=−\mathrm{20}\:\mathrm{m}/\mathrm{s}\:\left(\upuparrows\right) \\ $$

Commented by Tinkutara last updated on 11/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Answered by ajfour last updated on 11/Jul/17

Assuming, balls are thrown   vertically upwards. First ball at a  velocity 2u, and second after time   t_0  at velocity u.  if  t>t_0  we have   s_1 −s_2 =15     (s_1 −s_2 =−15 not possible)   [2ut−(1/2)gt^2 ]−[u(t−t_0 )−(1/2)g(t−t_0 )^2 ]=15  ⇒   u(t+t_0 )−(g/2)t_0 (2t−t_0 )−15=0   since this is true  for all times t>t_0   until any ball hits the ground, so   coefficient of t in equation and the  constant term are both zero.   u−gt_0 =0    and    ut_0 +((gt_0 ^2 )/2)−15=0    or  u=gt_0  and substituting this in  second equation, we get      ((3gt_0 ^2 )/2)=15   ⇒    t_0 =(√((10)/g))        u=gt_0  =(√(10g))  if  g=10m/s^2 , t_0 =1s and u=10m/s.

$$\mathrm{Assuming},\:\mathrm{balls}\:\mathrm{are}\:\mathrm{thrown}\: \\ $$$$\mathrm{vertically}\:\mathrm{upwards}.\:\mathrm{First}\:\mathrm{ball}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{velocity}\:\mathrm{2u},\:\mathrm{and}\:\mathrm{second}\:\mathrm{after}\:\mathrm{time} \\ $$$$\:\mathrm{t}_{\mathrm{0}} \:\mathrm{at}\:\mathrm{velocity}\:\mathrm{u}. \\ $$$$\mathrm{if}\:\:\mathrm{t}>\mathrm{t}_{\mathrm{0}} \:\mathrm{we}\:\mathrm{have} \\ $$$$\:\mathrm{s}_{\mathrm{1}} −\mathrm{s}_{\mathrm{2}} =\mathrm{15}\:\:\:\:\:\left(\mathrm{s}_{\mathrm{1}} −\mathrm{s}_{\mathrm{2}} =−\mathrm{15}\:\mathrm{not}\:\mathrm{possible}\right) \\ $$$$\:\left[\mathrm{2ut}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \right]−\left[\mathrm{u}\left(\mathrm{t}−\mathrm{t}_{\mathrm{0}} \right)−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{g}\left(\mathrm{t}−\mathrm{t}_{\mathrm{0}} \right)^{\mathrm{2}} \right]=\mathrm{15} \\ $$$$\Rightarrow\:\:\:\mathrm{u}\left(\mathrm{t}+\mathrm{t}_{\mathrm{0}} \right)−\frac{\mathrm{g}}{\mathrm{2}}\mathrm{t}_{\mathrm{0}} \left(\mathrm{2t}−\mathrm{t}_{\mathrm{0}} \right)−\mathrm{15}=\mathrm{0} \\ $$$$\:\mathrm{since}\:\mathrm{this}\:\mathrm{is}\:\mathrm{true}\:\:\mathrm{for}\:\mathrm{all}\:\mathrm{times}\:\mathrm{t}>\mathrm{t}_{\mathrm{0}} \\ $$$$\mathrm{until}\:\mathrm{any}\:\mathrm{ball}\:\mathrm{hits}\:\mathrm{the}\:\mathrm{ground},\:\mathrm{so} \\ $$$$\:\mathrm{coefficient}\:\mathrm{of}\:\boldsymbol{\mathrm{t}}\:\mathrm{in}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{constant}\:\mathrm{term}\:\mathrm{are}\:\mathrm{both}\:\mathrm{zero}. \\ $$$$\:\mathrm{u}−\mathrm{gt}_{\mathrm{0}} =\mathrm{0}\:\:\:\:\mathrm{and}\:\:\:\:\mathrm{ut}_{\mathrm{0}} +\frac{\mathrm{gt}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}}−\mathrm{15}=\mathrm{0} \\ $$$$\:\:\mathrm{or}\:\:\mathrm{u}=\mathrm{gt}_{\mathrm{0}} \:\mathrm{and}\:\mathrm{substituting}\:\mathrm{this}\:\mathrm{in} \\ $$$$\mathrm{second}\:\mathrm{equation},\:\mathrm{we}\:\mathrm{get} \\ $$$$\:\:\:\:\frac{\mathrm{3gt}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}}=\mathrm{15}\:\:\:\Rightarrow\:\:\:\:\mathrm{t}_{\mathrm{0}} =\sqrt{\frac{\mathrm{10}}{\mathrm{g}}}\: \\ $$$$\:\:\:\:\:\mathrm{u}=\mathrm{gt}_{\mathrm{0}} \:=\sqrt{\mathrm{10g}} \\ $$$$\mathrm{if}\:\:\mathrm{g}=\mathrm{10m}/\mathrm{s}^{\mathrm{2}} ,\:\mathrm{t}_{\mathrm{0}} =\mathrm{1s}\:\mathrm{and}\:\mathrm{u}=\mathrm{10m}/\mathrm{s}. \\ $$

Commented by Tinkutara last updated on 11/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com