Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1791 by RasheedAhmad last updated on 29/Sep/15

Simplify :  (3+4i)^(3−4i)

$${Simplify}\:: \\ $$$$\left(\mathrm{3}+\mathrm{4}{i}\right)^{\mathrm{3}−\mathrm{4}{i}} \\ $$

Commented by 112358 last updated on 29/Sep/15

Define z=(3+4i)^(3−4i)  and w=3+4i.  ∣w∣=(√(4^2 +3^2 ))=5. With the argument  of w being θ we get θ=tan^(−1) ((4/3))  The exponential form of p is then  p=5e^(iθ)   where θ=tan^(−1) ((4/3)).  Therefore, z=(5e^(iθ) )^(3−4i) . Taking  logs to base e we obtain   lnz=ln[(5e^(iθ) )^(3−4i) ]        =(3−4i)ln(5e^(iθ) )        =(3−4i)ln5+(3−4i)iθ        =ln125−iln625+3iθ+4θ        =ln125+4θ+i(3θ−ln625)  Thus we get z=e^(ln125+4θ+i(3θ−ln625)) .  z=125e^(4θ) e^(i(3θ−ln625))   z=125e^(4tan^(−1) ((4/3))) e^(i(3tan^(−1) ((4/3))−ln625))   This is of form z=re^(iθ) . Therefore  ∣z∣=125e^(4tan^(−1) (4/3))  and its argument  is θ=3tan^(−1) ((4/3))−ln625.

$${Define}\:{z}=\left(\mathrm{3}+\mathrm{4}{i}\right)^{\mathrm{3}−\mathrm{4}{i}} \:{and}\:{w}=\mathrm{3}+\mathrm{4}{i}. \\ $$$$\mid{w}\mid=\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\mathrm{5}.\:{With}\:{the}\:{argument} \\ $$$${of}\:{w}\:{being}\:\theta\:{we}\:{get}\:\theta={tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$$${The}\:{exponential}\:{form}\:{of}\:{p}\:{is}\:{then} \\ $$$${p}=\mathrm{5}{e}^{{i}\theta} \:\:{where}\:\theta={tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right). \\ $$$${Therefore},\:{z}=\left(\mathrm{5}{e}^{{i}\theta} \right)^{\mathrm{3}−\mathrm{4}{i}} .\:{Taking} \\ $$$${logs}\:{to}\:{base}\:{e}\:{we}\:{obtain}\: \\ $$$${lnz}={ln}\left[\left(\mathrm{5}{e}^{{i}\theta} \right)^{\mathrm{3}−\mathrm{4}{i}} \right] \\ $$$$\:\:\:\:\:\:=\left(\mathrm{3}−\mathrm{4}{i}\right){ln}\left(\mathrm{5}{e}^{{i}\theta} \right) \\ $$$$\:\:\:\:\:\:=\left(\mathrm{3}−\mathrm{4}{i}\right){ln}\mathrm{5}+\left(\mathrm{3}−\mathrm{4}{i}\right){i}\theta \\ $$$$\:\:\:\:\:\:={ln}\mathrm{125}−{iln}\mathrm{625}+\mathrm{3}{i}\theta+\mathrm{4}\theta \\ $$$$\:\:\:\:\:\:={ln}\mathrm{125}+\mathrm{4}\theta+{i}\left(\mathrm{3}\theta−{ln}\mathrm{625}\right) \\ $$$${Thus}\:{we}\:{get}\:{z}={e}^{{ln}\mathrm{125}+\mathrm{4}\theta+{i}\left(\mathrm{3}\theta−{ln}\mathrm{625}\right)} . \\ $$$${z}=\mathrm{125}{e}^{\mathrm{4}\theta} {e}^{{i}\left(\mathrm{3}\theta−{ln}\mathrm{625}\right)} \\ $$$${z}=\mathrm{125}{e}^{\mathrm{4}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)} {e}^{{i}\left(\mathrm{3}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)−{ln}\mathrm{625}\right)} \\ $$$${This}\:{is}\:{of}\:{form}\:{z}={re}^{{i}\theta} .\:{Therefore} \\ $$$$\mid{z}\mid=\mathrm{125}{e}^{\mathrm{4}{tan}^{−\mathrm{1}} \left(\mathrm{4}/\mathrm{3}\right)} \:{and}\:{its}\:{argument} \\ $$$${is}\:\theta=\mathrm{3}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)−{ln}\mathrm{625}.\: \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com