Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 179458 by cortano1 last updated on 29/Oct/22

  Find the area of the triangle in the  first quadrant between the x and y  axis and the tangent to the  relationship curve y=(5/x)−(x/5) and x dont  equal 0 at (0,5)

$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{quadrant}\:\mathrm{between}\:\mathrm{the}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\mathrm{axis}\:\mathrm{and}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{relationship}\:\mathrm{curve}\:\mathrm{y}=\frac{\mathrm{5}}{\mathrm{x}}−\frac{\mathrm{x}}{\mathrm{5}}\:\mathrm{and}\:\mathrm{x}\:\mathrm{dont} \\ $$$$\mathrm{equal}\:\mathrm{0}\:\mathrm{at}\:\left(\mathrm{0},\mathrm{5}\right) \\ $$

Commented by Acem last updated on 29/Oct/22

Is the last line implying that the C_f  doesn′t   intersect with the axis y′y “we know that” or that   point of the tangent. So what′s meant by the   “and x ≠ 0 at (0, 5)”

$${Is}\:{the}\:{last}\:{line}\:{implying}\:{that}\:{the}\:{C}_{{f}} \:{doesn}'{t} \\ $$$$\:{intersect}\:{with}\:{the}\:{axis}\:{y}'{y}\:``{we}\:{know}\:{that}''\:{or}\:{that} \\ $$$$\:{point}\:{of}\:{the}\:{tangent}.\:{So}\:{what}'{s}\:{meant}\:{by}\:{the} \\ $$$$\:``{and}\:{x}\:\neq\:\mathrm{0}\:{at}\:\left(\mathrm{0},\:\mathrm{5}\right)'' \\ $$$$\: \\ $$

Commented by cortano1 last updated on 30/Oct/22

in this book like that

$$\mathrm{in}\:\mathrm{this}\:\mathrm{book}\:\mathrm{like}\:\mathrm{that} \\ $$

Answered by DvMc last updated on 29/Oct/22

  We need an lineal ecuation f(x) of   slope m = y′ and that contains the   point P(x,(5/x)−(x/5))     y′=−(5/x^2 )−(1/5)        then  (5/x)−(x/5)=(−(5/x^2 )−(1/5))x+b  (5/x)−(x/5)=−(5/x)−(x/5)+b           ((10)/x)=b   Next  f(x)=(−(5/k^2 )−(1/5))x+((10)/k)   Where k is the x of the original function  in which the tanency is needed  The height of triangle is ((10)/k)  and its base is x when f(x)=0:  0=(−(5/k^2 )−(1/5))x+((10)/k)   x=((10/k)/((25+k^2 )/5k^2 ))=((50k)/(25+k^2 ))     So, the area of triangle tangente to y  in x=k is  A=(1/2)×((10)/k)×((50k)/(25+k^2 ))=((250)/(25+k^2 ))

$$ \\ $$$${We}\:{need}\:{an}\:{lineal}\:{ecuation}\:{f}\left({x}\right)\:{of}\: \\ $$$${slope}\:{m}\:=\:{y}'\:{and}\:{that}\:{contains}\:{the}\: \\ $$$${point}\:{P}\left({x},\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}\right) \\ $$$$\: \\ $$$${y}'=−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\:\:\: \\ $$$$\: \\ $$$${then} \\ $$$$\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}=\left(−\frac{\mathrm{5}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\right){x}+{b} \\ $$$$\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}=−\frac{\mathrm{5}}{{x}}−\frac{{x}}{\mathrm{5}}+{b}\:\:\:\:\:\:\:\:\: \\ $$$$\frac{\mathrm{10}}{{x}}={b} \\ $$$$\:{Next} \\ $$$${f}\left({x}\right)=\left(−\frac{\mathrm{5}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\right){x}+\frac{\mathrm{10}}{{k}}\: \\ $$$${Where}\:{k}\:{is}\:{the}\:{x}\:{of}\:{the}\:{original}\:{function} \\ $$$${in}\:{which}\:{the}\:{tanency}\:{is}\:{needed} \\ $$$${The}\:{height}\:{of}\:{triangle}\:{is}\:\frac{\mathrm{10}}{{k}} \\ $$$${and}\:{its}\:{base}\:{is}\:{x}\:{when}\:{f}\left({x}\right)=\mathrm{0}: \\ $$$$\mathrm{0}=\left(−\frac{\mathrm{5}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{5}}\right){x}+\frac{\mathrm{10}}{{k}}\: \\ $$$${x}=\frac{\mathrm{10}/{k}}{\left(\mathrm{25}+{k}^{\mathrm{2}} \right)/\mathrm{5}{k}^{\mathrm{2}} }=\frac{\mathrm{50}{k}}{\mathrm{25}+{k}^{\mathrm{2}} } \\ $$$$\: \\ $$$${So},\:{the}\:{area}\:{of}\:{triangle}\:{tangente}\:{to}\:{y} \\ $$$${in}\:{x}={k}\:{is} \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{10}}{{k}}×\frac{\mathrm{50}{k}}{\mathrm{25}+{k}^{\mathrm{2}} }=\frac{\mathrm{250}}{\mathrm{25}+{k}^{\mathrm{2}} }\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com