Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 179542 by cortano1 last updated on 30/Oct/22

   A and B play a game in which they    alternately toss a pair of dice. The    one who is first to get a total of 7 wins    the game . Find probability that the one    who tosses second will win the game

$$\:\:\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{play}\:\mathrm{a}\:\mathrm{game}\:\mathrm{in}\:\mathrm{which}\:\mathrm{they} \\ $$$$\:\:\mathrm{alternately}\:\mathrm{toss}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{dice}.\:\mathrm{The} \\ $$$$\:\:\mathrm{one}\:\mathrm{who}\:\mathrm{is}\:\mathrm{first}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}\:\mathrm{total}\:\mathrm{of}\:\mathrm{7}\:\mathrm{wins} \\ $$$$\:\:\mathrm{the}\:\mathrm{game}\:.\:\mathrm{Find}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{one} \\ $$$$\:\:\mathrm{who}\:\mathrm{tosses}\:\mathrm{second}\:\mathrm{will}\:\mathrm{win}\:\mathrm{the}\:\mathrm{game} \\ $$$$ \\ $$

Answered by Frix last updated on 30/Oct/22

the probability to get 7 with 2 dices is (1/6)  ⇒  P(1^(st)  player has no 7)=(5/6)  P(2^(nd)  player has 7)=(1/6)  P(2^(nd)  player wins in 1^(st)  round)=(5/(36))    P_1 =P(1^(st)  player wins in n^(th)  round)=(1/6)((5/6))^(2n−2)   P_2 =P(2^(nd)  player wins in n^(th)  round)=(1/6)((5/6))^(2n−1)

$$\mathrm{the}\:\mathrm{probability}\:\mathrm{to}\:\mathrm{get}\:\mathrm{7}\:\mathrm{with}\:\mathrm{2}\:\mathrm{dices}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\Rightarrow \\ $$$${P}\left(\mathrm{1}^{\mathrm{st}} \:\mathrm{player}\:\mathrm{has}\:\mathrm{no}\:\mathrm{7}\right)=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${P}\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{player}\:\mathrm{has}\:\mathrm{7}\right)=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${P}\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{player}\:\mathrm{wins}\:\mathrm{in}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{round}\right)=\frac{\mathrm{5}}{\mathrm{36}} \\ $$$$ \\ $$$${P}_{\mathrm{1}} ={P}\left(\mathrm{1}^{\mathrm{st}} \:\mathrm{player}\:\mathrm{wins}\:\mathrm{in}\:{n}^{\mathrm{th}} \:\mathrm{round}\right)=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{2}{n}−\mathrm{2}} \\ $$$${P}_{\mathrm{2}} ={P}\left(\mathrm{2}^{\mathrm{nd}} \:\mathrm{player}\:\mathrm{wins}\:\mathrm{in}\:{n}^{\mathrm{th}} \:\mathrm{round}\right)=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)^{\mathrm{2}{n}−\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com