Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 179862 by cherokeesay last updated on 03/Nov/22

Commented by CElcedricjunior last updated on 03/Nov/22

 { ((y=lnx)),((y=2)) :}=>lnx=2=>x=e^2   =>x∈]0;e^2 ] et y∈[lnx;2]  ⇔A=∫_(lnx) ^2 ∫_0 ^e^2  dxdy  ⇔A=_ ∫_0 ^e^2  [2−lnx]dx  ⇔A=[3x−xlnx]_0 ^e^2    A=3e^2 −2e^2 =e^2   A=e^2   um  ...................le celebre cedric junior.......

$$\begin{cases}{\boldsymbol{{y}}=\boldsymbol{{lnx}}}\\{\boldsymbol{{y}}=\mathrm{2}}\end{cases}=>\boldsymbol{{lnx}}=\mathrm{2}=>\boldsymbol{{x}}=\boldsymbol{{e}}^{\mathrm{2}} \\ $$$$\left.=\left.>\boldsymbol{{x}}\in\right]\mathrm{0};\boldsymbol{{e}}^{\mathrm{2}} \right]\:\boldsymbol{{et}}\:\boldsymbol{{y}}\in\left[\boldsymbol{{lnx}};\mathrm{2}\right] \\ $$$$\Leftrightarrow\boldsymbol{{A}}=\int_{\boldsymbol{{lnx}}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\boldsymbol{{e}}^{\mathrm{2}} } \boldsymbol{{dxdy}} \\ $$$$\Leftrightarrow\boldsymbol{{A}}=_{} \int_{\mathrm{0}} ^{\boldsymbol{{e}}^{\mathrm{2}} } \left[\mathrm{2}−\boldsymbol{{lnx}}\right]\boldsymbol{{dx}} \\ $$$$\Leftrightarrow\boldsymbol{{A}}=\left[\mathrm{3}\boldsymbol{{x}}−\boldsymbol{{xlnx}}\right]_{\mathrm{0}} ^{\boldsymbol{{e}}^{\mathrm{2}} } \\ $$$$\boldsymbol{{A}}=\mathrm{3}\boldsymbol{{e}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{e}}^{\mathrm{2}} =\boldsymbol{{e}}^{\mathrm{2}} \\ $$$$\boldsymbol{{A}}={e}^{\mathrm{2}} \:\:{um} \\ $$$$...................{le}\:{celebre}\:{cedric}\:{junior}....... \\ $$$$ \\ $$

Commented by JDamian last updated on 03/Nov/22

that's clearly wrong

Answered by som(math1967) last updated on 03/Nov/22

 co ordinate L⇒lnx=0⇒x=1   L(1,0) B⇒(e^2 ,2)  shaded area  =e^2 ×2−∫_1 ^e^2  lnxdx  =2e^2 −[xlnx−x]_1 ^e^2    =2e^2 −[e^2 lne^2 −e^2 −0+1]  =2e^2 −[e^2 +1]  =(e^2 −1)squnit  e=2.71..

$$\:{co}\:{ordinate}\:{L}\Rightarrow{lnx}=\mathrm{0}\Rightarrow{x}=\mathrm{1} \\ $$$$\:{L}\left(\mathrm{1},\mathrm{0}\right)\:{B}\Rightarrow\left({e}^{\mathrm{2}} ,\mathrm{2}\right) \\ $$$${shaded}\:{area} \\ $$$$={e}^{\mathrm{2}} ×\mathrm{2}−\int_{\mathrm{1}} ^{{e}^{\mathrm{2}} } {lnxdx} \\ $$$$=\mathrm{2}{e}^{\mathrm{2}} −\left[{xlnx}−{x}\right]_{\mathrm{1}} ^{{e}^{\mathrm{2}} } \\ $$$$=\mathrm{2}{e}^{\mathrm{2}} −\left[{e}^{\mathrm{2}} {lne}^{\mathrm{2}} −{e}^{\mathrm{2}} −\mathrm{0}+\mathrm{1}\right] \\ $$$$=\mathrm{2}{e}^{\mathrm{2}} −\left[{e}^{\mathrm{2}} +\mathrm{1}\right] \\ $$$$=\left({e}^{\mathrm{2}} −\mathrm{1}\right){squnit} \\ $$$${e}=\mathrm{2}.\mathrm{71}.. \\ $$

Commented by som(math1967) last updated on 03/Nov/22

Commented by som(math1967) last updated on 03/Nov/22

 another method  area=∫_0 ^2 xdy=∫_0 ^2 e^y dy=e^2 −1

$$\:{another}\:{method} \\ $$$${area}=\int_{\mathrm{0}} ^{\mathrm{2}} {xdy}=\int_{\mathrm{0}} ^{\mathrm{2}} {e}^{{y}} {dy}={e}^{\mathrm{2}} −\mathrm{1} \\ $$

Commented by Acem last updated on 03/Nov/22

Yessss! Thanks

$${Yessss}!\:{Thanks} \\ $$

Answered by Acem last updated on 03/Nov/22

 the two limits x= 1 → e^2    Area= 2+ 2(e^2 −1)−∫_1 ^( e^2 )  ln x dx   = 2e^2 − [x ln x−x] ∣_( 1) ^e^2  = 2e^2 −(2e^2 −e^2 +1)   Area= e^2 −1= 6.389 un.^2

$$\:{the}\:{two}\:{limits}\:{x}=\:\mathrm{1}\:\rightarrow\:{e}^{\mathrm{2}} \\ $$$$\:{Area}=\:\mathrm{2}+\:\mathrm{2}\left({e}^{\mathrm{2}} −\mathrm{1}\right)−\int_{\mathrm{1}} ^{\:{e}^{\mathrm{2}} } \:\mathrm{ln}\:{x}\:{dx} \\ $$$$\:=\:\mathrm{2}{e}^{\mathrm{2}} −\:\left[{x}\:\mathrm{ln}\:{x}−{x}\right]\:\mid_{\:\mathrm{1}} ^{{e}^{\mathrm{2}} } =\:\mathrm{2}{e}^{\mathrm{2}} −\left(\mathrm{2}{e}^{\mathrm{2}} −{e}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\:{Area}=\:{e}^{\mathrm{2}} −\mathrm{1}=\:\mathrm{6}.\mathrm{389}\:{un}.^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com