Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 180274 by Ar Brandon last updated on 09/Nov/22

Solve in C the equation              z^4 +(7−i)z^3 +(12−15i)z^2 +(4+4i)z+16+192i=0  Knowing that it has one real root and a purely imaginary root  of equal magnitude.

$$\mathrm{Solve}\:\mathrm{in}\:\mathbb{C}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{z}^{\mathrm{4}} +\left(\mathrm{7}−{i}\right){z}^{\mathrm{3}} +\left(\mathrm{12}−\mathrm{15}{i}\right){z}^{\mathrm{2}} +\left(\mathrm{4}+\mathrm{4}{i}\right){z}+\mathrm{16}+\mathrm{192}{i}=\mathrm{0} \\ $$$$\mathrm{Knowing}\:\mathrm{that}\:\mathrm{it}\:\mathrm{has}\:\mathrm{one}\:\mathrm{real}\:\mathrm{root}\:\mathrm{and}\:\mathrm{a}\:\mathrm{purely}\:\mathrm{imaginary}\:\mathrm{root} \\ $$$$\mathrm{of}\:\mathrm{equal}\:\mathrm{magnitude}. \\ $$

Answered by Frix last updated on 09/Nov/22

because at least one root is real we need  the imaginary part to equal 0   { ((z^4 +7z^3 +12z^2 +4z+16=0)),((i(z^3 +15z^2 −4z−192)=0 ⇒ z_1 =−4 (trying factors of 192))) :}   ⇒ z_2 =−4i∨z_2 =4i  trying in original equation we get  z_2 =4i  ⇒  z^4 +(7−i)z^3 +(12−15i)z^2 +(4+4i)z+16+192i=  =(z+4)(z−4i)(z^2 +(3+3i)z−12+i)  ⇒  z_3 =−5−2i  z_4 =2−i

$$\mathrm{because}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{root}\:\mathrm{is}\:\mathrm{real}\:\mathrm{we}\:\mathrm{need} \\ $$$$\mathrm{the}\:\mathrm{imaginary}\:\mathrm{part}\:\mathrm{to}\:\mathrm{equal}\:\mathrm{0} \\ $$$$\begin{cases}{{z}^{\mathrm{4}} +\mathrm{7}{z}^{\mathrm{3}} +\mathrm{12}{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{16}=\mathrm{0}}\\{\mathrm{i}\left({z}^{\mathrm{3}} +\mathrm{15}{z}^{\mathrm{2}} −\mathrm{4}{z}−\mathrm{192}\right)=\mathrm{0}\:\Rightarrow\:{z}_{\mathrm{1}} =−\mathrm{4}\:\left(\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{192}\right)}\end{cases}\: \\ $$$$\Rightarrow\:{z}_{\mathrm{2}} =−\mathrm{4i}\vee{z}_{\mathrm{2}} =\mathrm{4i} \\ $$$$\mathrm{trying}\:\mathrm{in}\:\mathrm{original}\:\mathrm{equation}\:\mathrm{we}\:\mathrm{get} \\ $$$${z}_{\mathrm{2}} =\mathrm{4i} \\ $$$$\Rightarrow \\ $$$${z}^{\mathrm{4}} +\left(\mathrm{7}−\mathrm{i}\right){z}^{\mathrm{3}} +\left(\mathrm{12}−\mathrm{15i}\right){z}^{\mathrm{2}} +\left(\mathrm{4}+\mathrm{4i}\right){z}+\mathrm{16}+\mathrm{192i}= \\ $$$$=\left({z}+\mathrm{4}\right)\left({z}−\mathrm{4i}\right)\left({z}^{\mathrm{2}} +\left(\mathrm{3}+\mathrm{3i}\right){z}−\mathrm{12}+\mathrm{i}\right) \\ $$$$\Rightarrow \\ $$$${z}_{\mathrm{3}} =−\mathrm{5}−\mathrm{2i} \\ $$$${z}_{\mathrm{4}} =\mathrm{2}−\mathrm{i} \\ $$

Commented by Ar Brandon last updated on 10/Nov/22

Thanks. How did you get z3 and Z4 please?

Commented by Frix last updated on 10/Nov/22

you can use the usual formula  z^2 +(3+3i)z−12+i=0  z=−((3+3i)/2)±(√((((3+3i)^2 )/4)−(−12+i)))=  =−((3+3i)/2)±(√(12+(7/2)i))  solving (a+bi)^2 =12+(7/2)i ⇒ (√(12+(7/2)i))=((7+i)/2)  z=−((3+3i)/2)±((7+i)/2)= { ((−5−2i)),((2−i)) :}

$$\mathrm{you}\:\mathrm{can}\:\mathrm{use}\:\mathrm{the}\:\mathrm{usual}\:\mathrm{formula} \\ $$$${z}^{\mathrm{2}} +\left(\mathrm{3}+\mathrm{3i}\right){z}−\mathrm{12}+\mathrm{i}=\mathrm{0} \\ $$$${z}=−\frac{\mathrm{3}+\mathrm{3i}}{\mathrm{2}}\pm\sqrt{\frac{\left(\mathrm{3}+\mathrm{3i}\right)^{\mathrm{2}} }{\mathrm{4}}−\left(−\mathrm{12}+\mathrm{i}\right)}= \\ $$$$=−\frac{\mathrm{3}+\mathrm{3i}}{\mathrm{2}}\pm\sqrt{\mathrm{12}+\frac{\mathrm{7}}{\mathrm{2}}\mathrm{i}} \\ $$$$\mathrm{solving}\:\left({a}+{b}\mathrm{i}\right)^{\mathrm{2}} =\mathrm{12}+\frac{\mathrm{7}}{\mathrm{2}}\mathrm{i}\:\Rightarrow\:\sqrt{\mathrm{12}+\frac{\mathrm{7}}{\mathrm{2}}\mathrm{i}}=\frac{\mathrm{7}+\mathrm{i}}{\mathrm{2}} \\ $$$${z}=−\frac{\mathrm{3}+\mathrm{3i}}{\mathrm{2}}\pm\frac{\mathrm{7}+\mathrm{i}}{\mathrm{2}}=\begin{cases}{−\mathrm{5}−\mathrm{2i}}\\{\mathrm{2}−\mathrm{i}}\end{cases} \\ $$

Commented by Ar Brandon last updated on 10/Nov/22

Let me try  ⇒z^2 +(3+3i)z−12+i=0  ⇒z=((−3−3i±(√((3+3i)^2 +4(12−i))))/2)          =((−3−3i±(√(48+14i)))/2)=((−3−3i±(7+i))/2)  z_3 =−5−2i , z_4 =2−i

$$\mathrm{Let}\:\mathrm{me}\:\mathrm{try} \\ $$$$\Rightarrow{z}^{\mathrm{2}} +\left(\mathrm{3}+\mathrm{3}{i}\right){z}−\mathrm{12}+{i}=\mathrm{0} \\ $$$$\Rightarrow{z}=\frac{−\mathrm{3}−\mathrm{3}{i}\pm\sqrt{\left(\mathrm{3}+\mathrm{3}{i}\right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{12}−{i}\right)}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{−\mathrm{3}−\mathrm{3}{i}\pm\sqrt{\mathrm{48}+\mathrm{14}{i}}}{\mathrm{2}}=\frac{−\mathrm{3}−\mathrm{3}{i}\pm\left(\mathrm{7}+{i}\right)}{\mathrm{2}} \\ $$$${z}_{\mathrm{3}} =−\mathrm{5}−\mathrm{2}{i}\:,\:{z}_{\mathrm{4}} =\mathrm{2}−{i} \\ $$

Commented by Ar Brandon last updated on 10/Nov/22

Got it. Thanks Sir !

Commented by Frix last updated on 10/Nov/22

��

Commented by Ar Brandon last updated on 10/Nov/22

What about z^2 +(3+3i)z−12+i ?  Any quick methode to get it? Appart from  Euclid′s division.

$$\mathrm{What}\:\mathrm{about}\:{z}^{\mathrm{2}} +\left(\mathrm{3}+\mathrm{3}{i}\right){z}−\mathrm{12}+{i}\:? \\ $$$$\mathrm{Any}\:\mathrm{quick}\:\mathrm{methode}\:\mathrm{to}\:\mathrm{get}\:\mathrm{it}?\:\mathrm{Appart}\:\mathrm{from} \\ $$$$\mathrm{Euclid}'\mathrm{s}\:\mathrm{division}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com