Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 18111 by ajfour last updated on 15/Jul/17

Commented by ajfour last updated on 15/Jul/17

Given a circle of radius R. A chord  AB is drawn through point M of the  diameter at an angle 𝛗 to it;   BM:AM=p:q . Through point B is  dropped  a perpendicular BC to the  diameter, and point C is joined to  point A. Find the area of the △ABC.

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{R}.\:\mathrm{A}\:\mathrm{chord} \\ $$$$\mathrm{AB}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{through}\:\mathrm{point}\:\mathrm{M}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{diameter}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\boldsymbol{\phi}\:\mathrm{to}\:\mathrm{it}; \\ $$$$\:\mathrm{BM}:\mathrm{AM}=\mathrm{p}:\mathrm{q}\:.\:\mathrm{Through}\:\mathrm{point}\:\mathrm{B}\:\mathrm{is} \\ $$$$\mathrm{dropped}\:\:\mathrm{a}\:\mathrm{perpendicular}\:\mathrm{BC}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{diameter},\:\mathrm{and}\:\mathrm{point}\:\mathrm{C}\:\mathrm{is}\:\mathrm{joined}\:\mathrm{to} \\ $$$$\mathrm{point}\:\mathrm{A}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\bigtriangleup\mathrm{ABC}. \\ $$

Commented by ajfour last updated on 16/Jul/17

Commented by ajfour last updated on 16/Jul/17

let O be centre of circle.  length of chird AB=l  construct OF ⊥ to chord AB.  let its length is d.  let  ((AM)/(AM+BM))=λ =(q/(p+q)) ⇒ ((AM)/(AB))=λ     AM=λl   ,   BM=(1−λl)  Also     AM=AF−FM                    λl=(l/2)−dcot φ   ..(i)                 BM=BF+FM          (1−λ)l=(l/2)+dcot φ    ...(ii)  (ii)−(i) gives:           (1−2λ)l=2dcot φ  ⇒ tan^2 φ(1−2λ)l^2 =4(R^2 −(l^2 /4))          l^2 =((4R^2 )/(1+(1−2λ)^2 tan^2 φ))  S_(ABC) =(1/2)×BC×(AM+BM)cos φ            =(1/2)(BMsin φ)lcos φ            =(1/4)(1−λ)l^2 sin 2φ           =(1/4)((p/(p+q))).[((4R^2 )/(1+(((p−q)/(p+q)))^2 tan^2 φ))]    S_(ABC) =((p(p+q)R^2 sin 2φ)/((p+q)^2 +(p−q)^2 tan^2 φ)) .

$$\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{circle}. \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{chird}\:\mathrm{AB}={l} \\ $$$$\mathrm{construct}\:\mathrm{OF}\:\bot\:\mathrm{to}\:\mathrm{chord}\:\mathrm{AB}. \\ $$$$\mathrm{let}\:\mathrm{its}\:\mathrm{length}\:\mathrm{is}\:\mathrm{d}. \\ $$$$\mathrm{let}\:\:\frac{\mathrm{AM}}{\mathrm{AM}+\mathrm{BM}}=\lambda\:=\frac{\mathrm{q}}{\mathrm{p}+\mathrm{q}}\:\Rightarrow\:\frac{\mathrm{AM}}{\mathrm{AB}}=\lambda \\ $$$$\:\:\:\mathrm{AM}=\lambda{l}\:\:\:,\:\:\:\mathrm{BM}=\left(\mathrm{1}−\lambda{l}\right) \\ $$$$\mathrm{Also}\:\:\:\:\:\mathrm{AM}=\mathrm{AF}−\mathrm{FM} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda{l}=\frac{{l}}{\mathrm{2}}−\mathrm{dcot}\:\phi\:\:\:..\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{BM}=\mathrm{BF}+\mathrm{FM} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{1}−\lambda\right){l}=\frac{{l}}{\mathrm{2}}+\mathrm{dcot}\:\phi\:\:\:\:...\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{ii}\right)−\left(\mathrm{i}\right)\:\mathrm{gives}: \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{1}−\mathrm{2}\lambda\right){l}=\mathrm{2dcot}\:\phi \\ $$$$\Rightarrow\:\mathrm{tan}\:^{\mathrm{2}} \phi\left(\mathrm{1}−\mathrm{2}\lambda\right){l}^{\mathrm{2}} =\mathrm{4}\left(\mathrm{R}^{\mathrm{2}} −\frac{{l}^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$$\:\:\:\:\:\:\:\:{l}^{\mathrm{2}} =\frac{\mathrm{4R}^{\mathrm{2}} }{\mathrm{1}+\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \phi} \\ $$$$\mathrm{S}_{\mathrm{ABC}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{BC}×\left(\mathrm{AM}+\mathrm{BM}\right)\mathrm{cos}\:\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{BMsin}\:\phi\right){l}\mathrm{cos}\:\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}−\lambda\right){l}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\phi \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{p}}{\mathrm{p}+\mathrm{q}}\right).\left[\frac{\mathrm{4R}^{\mathrm{2}} }{\mathrm{1}+\left(\frac{\mathrm{p}−\mathrm{q}}{\mathrm{p}+\mathrm{q}}\right)^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \phi}\right] \\ $$$$\:\:\mathrm{S}_{\mathrm{ABC}} =\frac{\mathrm{p}\left(\mathrm{p}+\mathrm{q}\right)\mathrm{R}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\phi}{\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} +\left(\mathrm{p}−\mathrm{q}\right)^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \phi}\:. \\ $$

Answered by b.e.h.i.8.3.417@gmail.com last updated on 15/Jul/17

AB=a  ((BM)/(AM))=(p/q)⇒((BM)/(BM+AM))=(p/(p+q))⇒BM=a.(p/(p+q))  cosϕ=((CM)/(MB))⇒CM=((ap)/((p+q).cosϕ))  CB=((ap)/((p+q).sinϕ))  AM=a−((ap)/(p+q))⇒AM=((aq)/(p+q))  S_(ABC) =(1/2)BC.CM+(1/2).CM.AM.sin(180−ϕ)=  =(1/2)(BC+AM.sinϕ).CM=  =(1/2)(((ap)/((p+q).sinϕ))+((aq)/((p+q))).sinϕ).((ap)/((p+q).cosϕ))=  =((a^2 .p(p+q.sin^2 ϕ))/((p+q)^2 .sin2ϕ))=p.((p+q.sin^2 ϕ)/(sin2ϕ)).  if you mean:  p+q=a.

$${AB}={a} \\ $$$$\frac{{BM}}{{AM}}=\frac{{p}}{{q}}\Rightarrow\frac{{BM}}{{BM}+{AM}}=\frac{{p}}{{p}+{q}}\Rightarrow{BM}={a}.\frac{{p}}{{p}+{q}} \\ $$$${cos}\varphi=\frac{{CM}}{{MB}}\Rightarrow{CM}=\frac{{ap}}{\left({p}+{q}\right).{cos}\varphi} \\ $$$${CB}=\frac{{ap}}{\left({p}+{q}\right).{sin}\varphi} \\ $$$${AM}={a}−\frac{{ap}}{{p}+{q}}\Rightarrow{AM}=\frac{{aq}}{{p}+{q}} \\ $$$${S}_{{ABC}} =\frac{\mathrm{1}}{\mathrm{2}}{BC}.{CM}+\frac{\mathrm{1}}{\mathrm{2}}.{CM}.{AM}.{sin}\left(\mathrm{180}−\varphi\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({BC}+{AM}.{sin}\varphi\right).{CM}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ap}}{\left({p}+{q}\right).{sin}\varphi}+\frac{{aq}}{\left({p}+{q}\right)}.{sin}\varphi\right).\frac{{ap}}{\left({p}+{q}\right).{cos}\varphi}= \\ $$$$=\frac{{a}^{\mathrm{2}} .{p}\left({p}+{q}.{sin}^{\mathrm{2}} \varphi\right)}{\left({p}+{q}\right)^{\mathrm{2}} .{sin}\mathrm{2}\varphi}={p}.\frac{{p}+{q}.{sin}^{\mathrm{2}} \varphi}{{sin}\mathrm{2}\varphi}. \\ $$$${if}\:{you}\:{mean}:\:\:{p}+{q}={a}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com