Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 181438 by Agnibhoo98 last updated on 26/Nov/22

If a + (1/b) = b + (1/c) = c + (1/a) then prove that  abc = ±1.   a ≠ b ≠ c

$$\mathrm{If}\:{a}\:+\:\frac{\mathrm{1}}{{b}}\:=\:{b}\:+\:\frac{\mathrm{1}}{{c}}\:=\:{c}\:+\:\frac{\mathrm{1}}{{a}}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${abc}\:=\:\pm\mathrm{1}.\:\:\:{a}\:\neq\:{b}\:\neq\:{c} \\ $$

Commented by mr W last updated on 26/Nov/22

it′s not true. e.g. you can take   a=b=c=2, and get abc=8.

$${it}'{s}\:{not}\:{true}.\:{e}.{g}.\:{you}\:{can}\:{take}\: \\ $$$${a}={b}={c}=\mathrm{2},\:{and}\:{get}\:{abc}=\mathrm{8}. \\ $$

Answered by manxsol last updated on 26/Nov/22

have f(a,b,c)  restriccions  a+(1/b)=k  ⇒g()=a+(1/b)−k=0  b+(1/c)=k  ⇒h()=b+(1/c)−k=0  c+(1/a)=k⇒ j()=c+(1/a)−k=0  ▽g()=((∂g/∂x);(∂g/∂y);(∂g/∂z))=(g_x ;g_y ;g_z )  df=λ_1 ▽g+λ_2 ▽h+λ_3 ▽j=0  df(a,b,c,λ_1 ,λ_2 ,λ_3 )=  λ_1 (1,−(1/b^2 ),0)+λ_2 (0,1,−(1/c^2 ))+λ_3 (−(1/a^2 ),0,1)=(0,0,0)   ((λ_1 ,λ_2 ,λ_3 ,(const)),((      1),(    0),(−(1/a^2 )),0),((−(1/b^2 )),(     1),(     0),0),((     0),(−(1/c^2 )),(     1),0) )    (λ_2 /c^2 )=λ_3   ⇒λ_2 =c^2 λ_3   (λ_1 /b^2 )=λ_2   ⇒λ_1 =b^2 λ_2   λ_1 =(λ_3 /a^2 )⇒λ_3 =a^2 λ_1   multiplication exprexions  λ_1 λ_2 λ_3 =a^2 b^2 c^2 λ_1 λ_2 λ_3   1=a^2 b^2 c^2   abc=± 1  LQQD

$${have}\:{f}\left({a},{b},{c}\right) \\ $$$${restriccions} \\ $$$${a}+\frac{\mathrm{1}}{{b}}={k}\:\:\Rightarrow{g}\left(\right)={a}+\frac{\mathrm{1}}{{b}}−{k}=\mathrm{0} \\ $$$${b}+\frac{\mathrm{1}}{{c}}={k}\:\:\Rightarrow{h}\left(\right)={b}+\frac{\mathrm{1}}{{c}}−{k}=\mathrm{0} \\ $$$${c}+\frac{\mathrm{1}}{{a}}={k}\Rightarrow\:{j}\left(\right)={c}+\frac{\mathrm{1}}{\mathrm{a}}−\mathrm{k}=\mathrm{0} \\ $$$$\bigtriangledown{g}\left(\right)=\left(\frac{\partial{g}}{\partial{x}};\frac{\partial{g}}{\partial{y}};\frac{\partial{g}}{\partial{z}}\right)=\left({g}_{{x}} ;{g}_{{y}} ;{g}_{{z}} \right) \\ $$$${df}=\lambda_{\mathrm{1}} \bigtriangledown{g}+\lambda_{\mathrm{2}} \bigtriangledown{h}+\lambda_{\mathrm{3}} \bigtriangledown{j}=\mathrm{0} \\ $$$${df}\left({a},{b},{c},\lambda_{\mathrm{1}} ,\lambda_{\mathrm{2}} ,\lambda_{\mathrm{3}} \right)= \\ $$$$\lambda_{\mathrm{1}} \left(\mathrm{1},−\frac{\mathrm{1}}{{b}^{\mathrm{2}} },\mathrm{0}\right)+\lambda_{\mathrm{2}} \left(\mathrm{0},\mathrm{1},−\frac{\mathrm{1}}{{c}^{\mathrm{2}} }\right)+\lambda_{\mathrm{3}} \left(−\frac{\mathrm{1}}{{a}^{\mathrm{2}} },\mathrm{0},\mathrm{1}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{0}\right) \\ $$$$\begin{pmatrix}{\lambda_{\mathrm{1}} }&{\lambda_{\mathrm{2}} }&{\lambda_{\mathrm{3}} }&{{const}}\\{\:\:\:\:\:\:\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{−\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}&{\mathrm{0}}\\{−\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}&{\:\:\:\:\:\mathrm{1}}&{\:\:\:\:\:\mathrm{0}}&{\mathrm{0}}\\{\:\:\:\:\:\mathrm{0}}&{−\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}&{\:\:\:\:\:\mathrm{1}}&{\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\frac{\lambda_{\mathrm{2}} }{{c}^{\mathrm{2}} }=\lambda_{\mathrm{3}} \:\:\Rightarrow\lambda_{\mathrm{2}} ={c}^{\mathrm{2}} \lambda_{\mathrm{3}} \\ $$$$\frac{\lambda_{\mathrm{1}} }{{b}^{\mathrm{2}} }=\lambda_{\mathrm{2}} \:\:\Rightarrow\lambda_{\mathrm{1}} ={b}^{\mathrm{2}} \lambda_{\mathrm{2}} \\ $$$$\lambda_{\mathrm{1}} =\frac{\lambda_{\mathrm{3}} }{{a}^{\mathrm{2}} }\Rightarrow\lambda_{\mathrm{3}} ={a}^{\mathrm{2}} \lambda_{\mathrm{1}} \\ $$$${multiplication}\:{exprexions} \\ $$$$\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} \lambda_{\mathrm{3}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \lambda_{\mathrm{1}} \lambda_{\mathrm{2}} \lambda_{\mathrm{3}} \\ $$$$\mathrm{1}={a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$${abc}=\pm\:\mathrm{1} \\ $$$${LQQD} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 26/Nov/22

what is proved?  with 2 conditions for 3 variables  abc can get any value.

$${what}\:{is}\:{proved}? \\ $$$${with}\:\mathrm{2}\:{conditions}\:{for}\:\mathrm{3}\:{variables} \\ $$$${abc}\:{can}\:{get}\:{any}\:{value}. \\ $$

Commented by manxsol last updated on 26/Nov/22

excuse me,Sr. W.how should I do it

$${excuse}\:{me},{Sr}.\:{W}.{how}\:{should}\:{I}\:{do}\:{it} \\ $$

Commented by manxsol last updated on 26/Nov/22

or the condition is missing a≠b≠c

$${or}\:{the}\:{condition}\:{is}\:{missing}\:{a}\neq{b}\neq{c} \\ $$

Commented by Agnibhoo98 last updated on 26/Nov/22

yes

$$\mathrm{yes} \\ $$

Commented by manxsol last updated on 26/Nov/22

Sr. W, my procedure is correct???

$${Sr}.\:{W},\:{my}\:{procedure}\:{is}\:{correct}??? \\ $$

Commented by mr W last updated on 26/Nov/22

something is wrong in the question.  an additional condition is needed.  a≠b≠c could be a such condition.

$${something}\:{is}\:{wrong}\:{in}\:{the}\:{question}. \\ $$$${an}\:{additional}\:{condition}\:{is}\:{needed}. \\ $$$${a}\neq{b}\neq{c}\:{could}\:{be}\:{a}\:{such}\:{condition}. \\ $$

Commented by mr W last updated on 26/Nov/22

i can′t judge, because i don′t know  what you want to prove.

$${i}\:{can}'{t}\:{judge},\:{because}\:{i}\:{don}'{t}\:{know} \\ $$$${what}\:{you}\:{want}\:{to}\:{prove}. \\ $$

Commented by manxsol last updated on 26/Nov/22

i understand, I will reflect on[the question. thank you very much for you attention

$${i}\:{understand},\:{I}\:{will}\:{reflect}\:{on}\left[{the}\:{question}.\:{thank}\:{you}\:{very}\:{much}\:{for}\:{you}\:{attention}\right. \\ $$

Answered by Agnibhoo98 last updated on 27/Nov/22

a + (1/b) = b + (1/c)  or a − b = (1/c) − (1/b) = ((b − c)/(bc))  .... (1)  b + (1/c) = c + (1/a)  or b − c = (1/a) − (1/c) = ((c − a)/(ca)) .... (2)  a + (1/b) = c + (1/a)  or a − c = (1/a) − (1/b) = ((b − a)/(ab)) .... (3)  Multiplying (1), (2), (3)    (a − b)(b − c)(a − c) = (((b − c)(c − a)(b − a))/((abc)^2 ))  or (abc)^2  = (((a − b)(b − c)(a − c))/((a − b)(b − c)(a − c)))  or (abc)^2  = 1  or abc = ±1

$${a}\:+\:\frac{\mathrm{1}}{{b}}\:=\:{b}\:+\:\frac{\mathrm{1}}{{c}} \\ $$$${or}\:{a}\:−\:{b}\:=\:\frac{\mathrm{1}}{{c}}\:−\:\frac{\mathrm{1}}{{b}}\:=\:\frac{{b}\:−\:{c}}{{bc}}\:\:....\:\left(\mathrm{1}\right) \\ $$$${b}\:+\:\frac{\mathrm{1}}{{c}}\:=\:{c}\:+\:\frac{\mathrm{1}}{{a}} \\ $$$${or}\:{b}\:−\:{c}\:=\:\frac{\mathrm{1}}{{a}}\:−\:\frac{\mathrm{1}}{{c}}\:=\:\frac{{c}\:−\:{a}}{{ca}}\:....\:\left(\mathrm{2}\right) \\ $$$${a}\:+\:\frac{\mathrm{1}}{{b}}\:=\:{c}\:+\:\frac{\mathrm{1}}{{a}} \\ $$$${or}\:{a}\:−\:{c}\:=\:\frac{\mathrm{1}}{{a}}\:−\:\frac{\mathrm{1}}{{b}}\:=\:\frac{{b}\:−\:{a}}{{ab}}\:....\:\left(\mathrm{3}\right) \\ $$$$\mathrm{Multiplying}\:\left(\mathrm{1}\right),\:\left(\mathrm{2}\right),\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\left({a}\:−\:{b}\right)\left({b}\:−\:{c}\right)\left({a}\:−\:{c}\right)\:=\:\frac{\left({b}\:−\:{c}\right)\left({c}\:−\:{a}\right)\left({b}\:−\:{a}\right)}{\left({abc}\right)^{\mathrm{2}} } \\ $$$${or}\:\left({abc}\right)^{\mathrm{2}} \:=\:\frac{\left({a}\:−\:{b}\right)\left({b}\:−\:{c}\right)\left({a}\:−\:{c}\right)}{\left({a}\:−\:{b}\right)\left({b}\:−\:{c}\right)\left({a}\:−\:{c}\right)} \\ $$$${or}\:\left({abc}\right)^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$${or}\:{abc}\:=\:\pm\mathrm{1} \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com