Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 183136 by mathlove last updated on 21/Dec/22

lim_(x→0) ((sinx−x)/x^3 )=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sinx}−{x}}{{x}^{\mathrm{3}} }=? \\ $$

Answered by TheSupreme last updated on 21/Dec/22

sin(x)=x−(x^3 /6)+o(x^4 )  lim ((−(x^3 /6)+o(x^4 ))/x^3 )=((−1)/6)

$${sin}\left({x}\right)={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{4}} \right) \\ $$$${lim}\:\frac{−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+{o}\left({x}^{\mathrm{4}} \right)}{{x}^{\mathrm{3}} }=\frac{−\mathrm{1}}{\mathrm{6}} \\ $$

Answered by CrispyXYZ last updated on 21/Dec/22

L′Hopital′s rule  =lim_(x→0) ((cosx−1)/(3x^2 ))  =(1/3)lim_(x→0) ((−sinx)/(2x))  =−(1/6)lim_(x→0) ((sinx)/x)  =−(1/6)

$$\mathrm{L}'\mathrm{Hopital}'\mathrm{s}\:\mathrm{rule} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}{x}−\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{sin}{x}}{\mathrm{2}{x}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}}{{x}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by TheSupreme last updated on 21/Dec/22

sin(x)−x and x^3  don′t respect de l′Hopital′s conditions

$${sin}\left({x}\right)−{x}\:{and}\:{x}^{\mathrm{3}} \:{don}'{t}\:{respect}\:{de}\:{l}'{Hopital}'{s}\:{conditions} \\ $$

Commented by MJS_new last updated on 21/Dec/22

why not? with x=0 we have  sin x −x=0 ∧ x^3 =0  (((d^3 [sin x −x])/dx^3 )/((d^3 [x^3 ])/dx^3 ))=((−cos x)/6)=_(x=0) −(1/6)

$$\mathrm{why}\:\mathrm{not}?\:\mathrm{with}\:{x}=\mathrm{0}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{sin}\:{x}\:−{x}=\mathrm{0}\:\wedge\:{x}^{\mathrm{3}} =\mathrm{0} \\ $$$$\frac{\frac{{d}^{\mathrm{3}} \left[\mathrm{sin}\:{x}\:−{x}\right]}{{dx}^{\mathrm{3}} }}{\frac{{d}^{\mathrm{3}} \left[{x}^{\mathrm{3}} \right]}{{dx}^{\mathrm{3}} }}=\frac{−\mathrm{cos}\:{x}}{\mathrm{6}}\underset{{x}=\mathrm{0}} {=}−\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Answered by CrispyXYZ last updated on 21/Dec/22

Another method without Taylor and L′Hopital  Let x=3y  I=lim_(x→0) ((sinx−x)/x^3 )  =lim_(y→0) ((sin3y−3y)/((3y)^3 ))  =lim_(y→0) ((3siny−4sin^3 y−3y)/(27y^3 ))  =lim_(y→0) ((3siny−3y)/(27y^3 ))−lim_(y→0) ((4sin^3 y)/(27y^3 ))  =(1/9)lim_(y→0) ((siny−y)/y^3 )−(4/(27))lim_(y→0) (((siny)/y))^3   =(1/9)I−(4/(27))  Therefore, I=(1/9)I−(4/(27))  ⇒I=−(1/6)

$$\mathrm{Another}\:\mathrm{method}\:\mathrm{without}\:\mathrm{Taylor}\:\mathrm{and}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\mathrm{Let}\:{x}=\mathrm{3}{y} \\ $$$${I}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}−{x}}{{x}^{\mathrm{3}} } \\ $$$$=\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin3}{y}−\mathrm{3}{y}}{\left(\mathrm{3}{y}\right)^{\mathrm{3}} } \\ $$$$=\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3sin}{y}−\mathrm{4sin}^{\mathrm{3}} {y}−\mathrm{3}{y}}{\mathrm{27}{y}^{\mathrm{3}} } \\ $$$$=\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3sin}{y}−\mathrm{3}{y}}{\mathrm{27}{y}^{\mathrm{3}} }−\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{4sin}^{\mathrm{3}} {y}}{\mathrm{27}{y}^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{y}−{y}}{{y}^{\mathrm{3}} }−\frac{\mathrm{4}}{\mathrm{27}}\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}{y}}{{y}}\right)^{\mathrm{3}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}{I}−\frac{\mathrm{4}}{\mathrm{27}} \\ $$$$\mathrm{Therefore},\:{I}=\frac{\mathrm{1}}{\mathrm{9}}{I}−\frac{\mathrm{4}}{\mathrm{27}} \\ $$$$\Rightarrow{I}=−\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by MJS_new last updated on 21/Dec/22

nice. but you need to show lim_(y→0)  ((sin y)/y) =1

$$\mathrm{nice}.\:\mathrm{but}\:\mathrm{you}\:\mathrm{need}\:\mathrm{to}\:\mathrm{show}\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{y}}{{y}}\:=\mathrm{1} \\ $$

Commented by CrispyXYZ last updated on 21/Dec/22

We can simply use equivalent infinitesimal:  sinx ∼ x  So lim_(x→0) ((sinx)/x)=1  Another way is to draw a circle x^2 +y^2 =1  construct an angle θ(rad) so one of the intersect is  (cosθ, sinθ). length of the arc is θ  it is easy to show that  lim_(θ→0) ((sinθ)/θ)=1

$$\mathrm{We}\:\mathrm{can}\:\mathrm{simply}\:\mathrm{use}\:\mathrm{equivalent}\:\mathrm{infinitesimal}: \\ $$$$\mathrm{sin}{x}\:\sim\:{x} \\ $$$$\mathrm{So}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}}{{x}}=\mathrm{1} \\ $$$$\mathrm{Another}\:\mathrm{way}\:\mathrm{is}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{a}\:\mathrm{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{construct}\:\mathrm{an}\:\mathrm{angle}\:\theta\left(\mathrm{rad}\right)\:\mathrm{so}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{intersect}\:\mathrm{is} \\ $$$$\left(\mathrm{cos}\theta,\:\mathrm{sin}\theta\right).\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{is}\:\theta \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that} \\ $$$$\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\theta}{\theta}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com