Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 184029 by SEKRET last updated on 02/Jan/23

  ∫_0 ^( 1) (( x−1)/(x+1))∙(1/(ln(x))) dx =?

$$\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\boldsymbol{\mathrm{x}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}+\mathrm{1}}\centerdot\frac{\mathrm{1}}{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)}\:\boldsymbol{\mathrm{dx}}\:=? \\ $$

Answered by ARUNG_Brandon_MBU last updated on 02/Jan/23

Ω(α)=∫_0 ^1 ((x^α −1)/(x+1))∙(1/(lnx))dx  Ω′(α)=∫_0 ^1 (x^α /(x+1))dx=∫_0 ^1 ((x^α (1−x))/(1−x^2 ))dx=(1/2)∫_0 ^1 ((x^((α−1)/2) −x^(α/2) )/(1−x))dx              =(1/2)(ψ(((α+2)/2))−ψ(((α+1)/2)))  Ω(α)=ln(Γ(((α+2)/2)))−ln(Γ(((α+1)/2)))+C  Ω(0)=0=ln(Γ(1))−ln(Γ((1/2)))+C ⇒C=ln(√π)  ⇒Ω(α)=ln(Γ(((α+2)/2)))−ln(Γ(((α+1)/2)))+ln(√π)  ∫_0 ^1 ((x−1)/(x+1))∙(1/(lnx))dx=Ω(1)=ln(Γ((3/2)))−ln(Γ(1))+ln(√π)  ∫_0 ^1 ((x−1)/(x+1))∙(1/(lnx))dx=ln(((√π)/2))+ln(√π)=ln((π/2))

$$\Omega\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} −\mathrm{1}}{{x}+\mathrm{1}}\centerdot\frac{\mathrm{1}}{\mathrm{ln}{x}}{dx} \\ $$$$\Omega'\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} }{{x}+\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} \left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\frac{\alpha−\mathrm{1}}{\mathrm{2}}} −{x}^{\frac{\alpha}{\mathrm{2}}} }{\mathrm{1}−{x}}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\psi\left(\frac{\alpha+\mathrm{2}}{\mathrm{2}}\right)−\psi\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\Omega\left(\alpha\right)=\mathrm{ln}\left(\Gamma\left(\frac{\alpha+\mathrm{2}}{\mathrm{2}}\right)\right)−\mathrm{ln}\left(\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\right)+{C} \\ $$$$\Omega\left(\mathrm{0}\right)=\mathrm{0}=\mathrm{ln}\left(\Gamma\left(\mathrm{1}\right)\right)−\mathrm{ln}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right)+{C}\:\Rightarrow{C}=\mathrm{ln}\sqrt{\pi} \\ $$$$\Rightarrow\Omega\left(\alpha\right)=\mathrm{ln}\left(\Gamma\left(\frac{\alpha+\mathrm{2}}{\mathrm{2}}\right)\right)−\mathrm{ln}\left(\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\right)+\mathrm{ln}\sqrt{\pi} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\centerdot\frac{\mathrm{1}}{\mathrm{ln}{x}}{dx}=\Omega\left(\mathrm{1}\right)=\mathrm{ln}\left(\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right)−\mathrm{ln}\left(\Gamma\left(\mathrm{1}\right)\right)+\mathrm{ln}\sqrt{\pi} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\centerdot\frac{\mathrm{1}}{\mathrm{ln}{x}}{dx}=\mathrm{ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)+\mathrm{ln}\sqrt{\pi}=\mathrm{ln}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$

Commented by SEKRET last updated on 02/Jan/23

  good  thank  you  sir

$$\:\:\boldsymbol{\mathrm{good}}\:\:\boldsymbol{\mathrm{thank}}\:\:\boldsymbol{\mathrm{you}}\:\:\boldsymbol{\mathrm{sir}} \\ $$

Commented by ARUNG_Brandon_MBU last updated on 02/Jan/23

����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com