Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 184084 by HeferH last updated on 02/Jan/23

Answered by Rasheed.Sindhi last updated on 03/Jan/23

w^3 =1⇒w=1,ω,ω^2   Let w_1 =ω & w_2 =ω^2   x=a+b  y=a^2 ω+b^2 ω^2   z=aω^2 +bω  ((x^2 −z^2 +y+2ab)/x^2 )  x^2 =a^2 +2ab+b^2   z^2 =a^2 ω^4 +2abω^2 ω+b^2 ω^2        =a^2 ω^3 ω+2abω^3 +b^2 ω^2        =a^2 ω+2ab+b^2 ω^2   y=a^2 ω+b^2 ω^2     ((x^2 −z^2 +y+2ab)/x^2 )=1+((−z^2 +y+2ab)/x^2 )  =1+((−(a^2 ω+2ab+b^2 ω^2 )+(a^2 ω+b^2 ω^2 )+2ab)/(a^2 +2ab+b^2 ))  =1+((−a^2 ω−2ab−b^2 ω^2 +a^2 ω+b^2 ω^2 +2ab)/(a^2 +2ab+b^2 ))  =1+0=1

$${w}^{\mathrm{3}} =\mathrm{1}\Rightarrow{w}=\mathrm{1},\omega,\omega^{\mathrm{2}} \\ $$$${Let}\:{w}_{\mathrm{1}} =\omega\:\&\:{w}_{\mathrm{2}} =\omega^{\mathrm{2}} \\ $$$${x}={a}+{b} \\ $$$${y}={a}^{\mathrm{2}} \omega+{b}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$${z}={a}\omega^{\mathrm{2}} +{b}\omega \\ $$$$\frac{{x}^{\mathrm{2}} −{z}^{\mathrm{2}} +{y}+\mathrm{2}{ab}}{{x}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} ={a}^{\mathrm{2}} \omega^{\mathrm{4}} +\mathrm{2}{ab}\omega^{\mathrm{2}} \omega+{b}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$\:\:\:\:\:={a}^{\mathrm{2}} \omega^{\mathrm{3}} \omega+\mathrm{2}{ab}\omega^{\mathrm{3}} +{b}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$\:\:\:\:\:={a}^{\mathrm{2}} \omega+\mathrm{2}{ab}+{b}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$${y}={a}^{\mathrm{2}} \omega+{b}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$ \\ $$$$\frac{{x}^{\mathrm{2}} −{z}^{\mathrm{2}} +{y}+\mathrm{2}{ab}}{{x}^{\mathrm{2}} }=\mathrm{1}+\frac{−{z}^{\mathrm{2}} +{y}+\mathrm{2}{ab}}{{x}^{\mathrm{2}} } \\ $$$$=\mathrm{1}+\frac{−\left({a}^{\mathrm{2}} \omega+\mathrm{2}{ab}+{b}^{\mathrm{2}} \omega^{\mathrm{2}} \right)+\left({a}^{\mathrm{2}} \omega+{b}^{\mathrm{2}} \omega^{\mathrm{2}} \right)+\mathrm{2}{ab}}{{a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} } \\ $$$$=\mathrm{1}+\frac{−\cancel{{a}^{\mathrm{2}} \omega}−\cancel{\mathrm{2}{ab}}−\cancel{{b}^{\mathrm{2}} \omega^{\mathrm{2}} }+\cancel{{a}^{\mathrm{2}} \omega}+\cancel{{b}^{\mathrm{2}} \omega^{\mathrm{2}} }+\cancel{\mathrm{2}{ab}}}{{a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} } \\ $$$$=\mathrm{1}+\mathrm{0}=\mathrm{1} \\ $$

Commented by HeferH last updated on 03/Jan/23

thank you sir, but why we say    w^2  and w are solutions of w^3 =1, it is a    property of complex numbers?

$${thank}\:{you}\:{sir},\:{but}\:{why}\:{we}\:{say}\: \\ $$$$\:{w}^{\mathrm{2}} \:{and}\:{w}\:{are}\:{solutions}\:{of}\:{w}^{\mathrm{3}} =\mathrm{1},\:{it}\:{is}\:{a}\: \\ $$$$\:{property}\:{of}\:{complex}\:{numbers}?\: \\ $$$$\: \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jan/23

Solving x^3 =1:  x^3 −1=0  (x−1)(x^2 +x+1)=0  x=1 , x=((−1±i(√3))/2)  You can verify easily that  ((−1+i(√3))/2) & ((−1−i(√3))/2) are square of  one another. So if any one of the  two is denoted by ω then the other  is equal to ω^2 .

$${Solving}\:{x}^{\mathrm{3}} =\mathrm{1}: \\ $$$${x}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=\mathrm{1}\:,\:{x}=\frac{−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${You}\:{can}\:{verify}\:{easily}\:{that} \\ $$$$\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\&\:\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:{are}\:{square}\:{of} \\ $$$${one}\:{another}.\:{So}\:{if}\:{any}\:{one}\:{of}\:{the} \\ $$$${two}\:{is}\:{denoted}\:{by}\:\omega\:{then}\:{the}\:{other} \\ $$$${is}\:{equal}\:{to}\:\omega^{\mathrm{2}} . \\ $$

Commented by HeferH last updated on 03/Jan/23

Oh, I didnt realize that until now, thank   you very much  :)

$${Oh},\:{I}\:{didnt}\:{realize}\:{that}\:{until}\:{now},\:{thank}\: \\ $$$$\left.{you}\:{very}\:{much}\:\::\right) \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jan/23

Anyway  sir, your knowledge of  math is more than of mine!  BTW               !RAEY WEN YPPAH

$${Anyway}\:\:{sir},\:{your}\:{knowledge}\:{of} \\ $$$${math}\:{is}\:{more}\:{than}\:{of}\:{mine}! \\ $$$$\mathcal{BTW}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:!\mathrm{RAEY}\:\mathrm{WEN}\:\mathrm{YPPAH} \\ $$

Commented by HeferH last updated on 03/Jan/23

Happy new year to you as well! :)

$$\left.{Happy}\:{new}\:{year}\:{to}\:{you}\:{as}\:{well}!\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com