Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 186571 by ajfour last updated on 06/Feb/23

If   x=−(1/((1+m)))((2/3)±(√((4/9)±((ia(√m))/(12)))))  where   (1+m)^2 =am      and that  9a(a+16)^2 =(16)^3   Find real x.

$${If}\:\:\:{x}=−\frac{\mathrm{1}}{\left(\mathrm{1}+{m}\right)}\left(\frac{\mathrm{2}}{\mathrm{3}}\pm\sqrt{\frac{\mathrm{4}}{\mathrm{9}}\pm\frac{{ia}\sqrt{{m}}}{\mathrm{12}}}\right) \\ $$$${where}\:\:\:\left(\mathrm{1}+{m}\right)^{\mathrm{2}} ={am} \\ $$$$\:\:\:\:{and}\:{that}\:\:\mathrm{9}{a}\left({a}+\mathrm{16}\right)^{\mathrm{2}} =\left(\mathrm{16}\right)^{\mathrm{3}} \\ $$$${Find}\:{real}\:{x}. \\ $$

Answered by ajfour last updated on 06/Feb/23

let  a+16=(1/b)  9((1/b)−16)=(16)^3 b^2   9(1−16b)=(16)^3 b^3   (16b)^3 +9(16b)−9=0  16b=(((3(√(21))+9)/2))^(1/3) −(((3(√(21))−9)/2))^(1/3)   a=((16)/((((3(√(21))+9)/2))^(1/3) −(((3(√(21))−9)/2))^(1/3) ))−16  a≈1.48810019  now   m^2 +(2−a)m+1=0  m=(a/2)−1±(√((a^2 /4)−a))  m=(a/2)−1+i(√(a(1−(a/4))))=h+ik  As  a(1−(a/4))>0    m(∈C)=h+ik =(a/2)−1+i(√(a−(a^2 /4)))  x=−(2/(3(1+h+ik))){1+(√(1±((3a(√(h+ik)))/(16))))}  but  m^(1/2) =(√(h+ik))=((1+h+ik)/a)  let  16+3(1+h+ik)=(p+iq)^2   19+3h=p^2 −q^2   3k=2pq  (19+3h)^2 =(p+q)^2 {(p+q)^2 −6k}  (p+q)^3 −6k(p+q)^2 −(19+3h)^2 =0  say  p+q=z  z^3 −6(√(a(1−(a/4))))z^2 −(((3a)/2)+16)^2 =0  we get  z>0   from above  p,q =(z/2)±(√((z^2 /4)−(3/2)(√(a(1−(a/4))))))  hopefully  p,q ∈R  x=(2/(3(1+h+ik)))(1+((p+iq)/4))  x=((p+4+iq)/(6(1+h+ik)))×(((1+h−ik))/((1+h−ik)))  x=(((p+4)(1+h)+kq)/(6{(1+h)^2 +k^2 })) +((i{q(1+h)−k(p+4)})/(6{(1+h)^2 +k^) }))  If  x has to ∈R  ⇒  ((p+4)/q)=((1+h)/k)=((a/2)/( (√(a(1−(a/4))))))  p+4=((aq)/( (√(a(4−a)))))  4+(z/2)+(√((z^2 /4)−(3/2)(√(a(1−(a/4))))))  =(a/( (√(a(4−a))))){(z/2)−(√((z^2 /4)−(3/2)(√(a(1−(a/4))))))}  ⇒  ((M−1)(z/2)−4)^2 =(M+1)^2 Q(z)  .....

$${let}\:\:{a}+\mathrm{16}=\frac{\mathrm{1}}{{b}} \\ $$$$\mathrm{9}\left(\frac{\mathrm{1}}{{b}}−\mathrm{16}\right)=\left(\mathrm{16}\right)^{\mathrm{3}} {b}^{\mathrm{2}} \\ $$$$\mathrm{9}\left(\mathrm{1}−\mathrm{16}{b}\right)=\left(\mathrm{16}\right)^{\mathrm{3}} {b}^{\mathrm{3}} \\ $$$$\left(\mathrm{16}{b}\right)^{\mathrm{3}} +\mathrm{9}\left(\mathrm{16}{b}\right)−\mathrm{9}=\mathrm{0} \\ $$$$\mathrm{16}{b}=\left(\frac{\mathrm{3}\sqrt{\mathrm{21}}+\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} −\left(\frac{\mathrm{3}\sqrt{\mathrm{21}}−\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${a}=\frac{\mathrm{16}}{\left(\frac{\mathrm{3}\sqrt{\mathrm{21}}+\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} −\left(\frac{\mathrm{3}\sqrt{\mathrm{21}}−\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{3}} }−\mathrm{16} \\ $$$${a}\approx\mathrm{1}.\mathrm{48810019} \\ $$$${now}\:\:\:{m}^{\mathrm{2}} +\left(\mathrm{2}−{a}\right){m}+\mathrm{1}=\mathrm{0} \\ $$$${m}=\frac{{a}}{\mathrm{2}}−\mathrm{1}\pm\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−{a}} \\ $$$${m}=\frac{{a}}{\mathrm{2}}−\mathrm{1}+{i}\sqrt{{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)}={h}+{ik} \\ $$$${As}\:\:{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)>\mathrm{0}\:\: \\ $$$${m}\left(\in\mathbb{C}\right)={h}+{ik}\:=\frac{{a}}{\mathrm{2}}−\mathrm{1}+{i}\sqrt{{a}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$${x}=−\frac{\mathrm{2}}{\mathrm{3}\left(\mathrm{1}+{h}+{ik}\right)}\left\{\mathrm{1}+\sqrt{\mathrm{1}\pm\frac{\mathrm{3}{a}\sqrt{{h}+{ik}}}{\mathrm{16}}}\right\} \\ $$$${but}\:\:{m}^{\mathrm{1}/\mathrm{2}} =\sqrt{{h}+{ik}}=\frac{\mathrm{1}+{h}+{ik}}{{a}} \\ $$$${let}\:\:\mathrm{16}+\mathrm{3}\left(\mathrm{1}+{h}+{ik}\right)=\left({p}+{iq}\right)^{\mathrm{2}} \\ $$$$\mathrm{19}+\mathrm{3}{h}={p}^{\mathrm{2}} −{q}^{\mathrm{2}} \\ $$$$\mathrm{3}{k}=\mathrm{2}{pq} \\ $$$$\left(\mathrm{19}+\mathrm{3}{h}\right)^{\mathrm{2}} =\left({p}+{q}\right)^{\mathrm{2}} \left\{\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{6}{k}\right\} \\ $$$$\left({p}+{q}\right)^{\mathrm{3}} −\mathrm{6}{k}\left({p}+{q}\right)^{\mathrm{2}} −\left(\mathrm{19}+\mathrm{3}{h}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${say}\:\:{p}+{q}={z} \\ $$$${z}^{\mathrm{3}} −\mathrm{6}\sqrt{{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)}{z}^{\mathrm{2}} −\left(\frac{\mathrm{3}{a}}{\mathrm{2}}+\mathrm{16}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${we}\:{get}\:\:{z}>\mathrm{0}\:\:\:{from}\:{above} \\ $$$${p},{q}\:=\frac{{z}}{\mathrm{2}}\pm\sqrt{\frac{{z}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)}} \\ $$$${hopefully}\:\:{p},{q}\:\in\mathbb{R} \\ $$$${x}=\frac{\mathrm{2}}{\mathrm{3}\left(\mathrm{1}+{h}+{ik}\right)}\left(\mathrm{1}+\frac{{p}+{iq}}{\mathrm{4}}\right) \\ $$$${x}=\frac{{p}+\mathrm{4}+{iq}}{\mathrm{6}\left(\mathrm{1}+{h}+{ik}\right)}×\frac{\left(\mathrm{1}+{h}−{ik}\right)}{\left(\mathrm{1}+{h}−{ik}\right)} \\ $$$${x}=\frac{\left({p}+\mathrm{4}\right)\left(\mathrm{1}+{h}\right)+{kq}}{\mathrm{6}\left\{\left(\mathrm{1}+{h}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} \right\}}\:+\frac{{i}\left\{{q}\left(\mathrm{1}+{h}\right)−{k}\left({p}+\mathrm{4}\right)\right\}}{\mathrm{6}\left\{\left(\mathrm{1}+{h}\right)^{\mathrm{2}} +{k}^{\left.\right)} \right\}} \\ $$$${If}\:\:{x}\:{has}\:{to}\:\in\mathbb{R} \\ $$$$\Rightarrow\:\:\frac{{p}+\mathrm{4}}{{q}}=\frac{\mathrm{1}+{h}}{{k}}=\frac{{a}/\mathrm{2}}{\:\sqrt{{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)}} \\ $$$${p}+\mathrm{4}=\frac{{aq}}{\:\sqrt{{a}\left(\mathrm{4}−{a}\right)}} \\ $$$$\mathrm{4}+\frac{{z}}{\mathrm{2}}+\sqrt{\frac{{z}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)}} \\ $$$$=\frac{{a}}{\:\sqrt{{a}\left(\mathrm{4}−{a}\right)}}\left\{\frac{{z}}{\mathrm{2}}−\sqrt{\frac{{z}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{{a}\left(\mathrm{1}−\frac{{a}}{\mathrm{4}}\right)}}\right\} \\ $$$$\Rightarrow\:\:\left(\left({M}−\mathrm{1}\right)\frac{{z}}{\mathrm{2}}−\mathrm{4}\right)^{\mathrm{2}} =\left({M}+\mathrm{1}\right)^{\mathrm{2}} {Q}\left({z}\right) \\ $$$$..... \\ $$$$ \\ $$

Answered by Frix last updated on 06/Feb/23

(√(u+vi))∈R ⇒ v=0  ⇒ a(√m)=0 ⇔ a=0∨m=0  a=0 ⇒ 9a(a+16)^2 =16^3  ⇔ 0=16^3  is false  m=0 ⇒ (1+m)^2 =am ⇔ 1=0 is false  ⇒ no real x

$$\sqrt{{u}+{v}\mathrm{i}}\in\mathbb{R}\:\Rightarrow\:{v}=\mathrm{0} \\ $$$$\Rightarrow\:{a}\sqrt{{m}}=\mathrm{0}\:\Leftrightarrow\:{a}=\mathrm{0}\vee{m}=\mathrm{0} \\ $$$${a}=\mathrm{0}\:\Rightarrow\:\mathrm{9}{a}\left({a}+\mathrm{16}\right)^{\mathrm{2}} =\mathrm{16}^{\mathrm{3}} \:\Leftrightarrow\:\mathrm{0}=\mathrm{16}^{\mathrm{3}} \:\mathrm{is}\:\mathrm{false} \\ $$$${m}=\mathrm{0}\:\Rightarrow\:\left(\mathrm{1}+{m}\right)^{\mathrm{2}} ={am}\:\Leftrightarrow\:\mathrm{1}=\mathrm{0}\:\mathrm{is}\:\mathrm{false} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{real}\:{x} \\ $$

Commented by ajfour last updated on 06/Feb/23

now  i think  MjS≠Frix

$${now}\:\:{i}\:{think}\:\:{MjS}\neq{Frix} \\ $$

Commented by Rasheed.Sindhi last updated on 07/Feb/23

Please keep looking in the mirror  until you see Frix opposite to you  without any plus, minus. :)

$${Please}\:{keep}\:{looking}\:{in}\:{the}\:{mirror} \\ $$$${until}\:{you}\:{see}\:{Frix}\:{opposite}\:{to}\:{you} \\ $$$$\left.{without}\:{any}\:{plus},\:{minus}.\::\right) \\ $$

Commented by MJS_new last updated on 07/Feb/23

I just looked in the mirror: I′m still very  close to the one I have been yesterday and  the day before yesterday. but maybe  (1) MJS+sunday+monday=Frix  is true. in this case find the value of  (2) (Frix+2tuesdays)×(MJS−wednesday)

$$\mathrm{I}\:\mathrm{just}\:\mathrm{looked}\:\mathrm{in}\:\mathrm{the}\:\mathrm{mirror}:\:\mathrm{I}'\mathrm{m}\:\mathrm{still}\:\mathrm{very} \\ $$$$\mathrm{close}\:\mathrm{to}\:\mathrm{the}\:\mathrm{one}\:\mathrm{I}\:\mathrm{have}\:\mathrm{been}\:\mathrm{yesterday}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{day}\:\mathrm{before}\:\mathrm{yesterday}.\:\mathrm{but}\:\mathrm{maybe} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{MJS}+\mathrm{sunday}+\mathrm{monday}=\mathrm{Frix} \\ $$$$\mathrm{is}\:\mathrm{true}.\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{Frix}+\mathrm{2tuesdays}\right)×\left(\mathrm{MJS}−\mathrm{wednesday}\right) \\ $$

Commented by Frix last updated on 07/Feb/23

The answer is 42 as always.

$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{42}\:\mathrm{as}\:\mathrm{always}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com