Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 186627 by Mingma last updated on 07/Feb/23

Commented by Frix last updated on 07/Feb/23

As always: The answer is 42  • We have 2 equations for 6 unknowns ⇒  We can choose 4 of them and solve for the  remaining 2.  • We can set ((a+b+c)/(x+y+z))=42 ⇒ We now have  3 equations for 6 unknowns ⇒ We can  choose 3 of them and solve for the remaining 3

$$\mathrm{As}\:\mathrm{always}:\:\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{42} \\ $$$$\bullet\:\mathrm{We}\:\mathrm{have}\:\mathrm{2}\:\mathrm{equations}\:\mathrm{for}\:\mathrm{6}\:\mathrm{unknowns}\:\Rightarrow \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{4}\:\mathrm{of}\:\mathrm{them}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{remaining}\:\mathrm{2}. \\ $$$$\bullet\:\mathrm{We}\:\mathrm{can}\:\mathrm{set}\:\frac{{a}+{b}+{c}}{{x}+{y}+{z}}=\mathrm{42}\:\Rightarrow\:\mathrm{We}\:\mathrm{now}\:\mathrm{have} \\ $$$$\mathrm{3}\:\mathrm{equations}\:\mathrm{for}\:\mathrm{6}\:\mathrm{unknowns}\:\Rightarrow\:\mathrm{We}\:\mathrm{can} \\ $$$$\mathrm{choose}\:\mathrm{3}\:\mathrm{of}\:\mathrm{them}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{3} \\ $$

Answered by ajfour last updated on 07/Feb/23

z=qx,  y=px  x(a+bp+cq)=20  y((a/p)+b+((cq)/p))=20  z((a/q)+((bp)/q)+c)=20  ax+by+cz=Σ((20a)/(a+bp+cq))=20  ⇒ a((a/p)+b+((cq)/p))((a/q)+((bp)/q)+c)  +b((a/q)+((bp)/q)+c)(a+bp+cq)  +c(a+bp+cq)((a/p)+b+((cq)/p))=1  let    ?=(1/Q)  ⇒   x+y+z=Q(a+b+c)  ⇒  (1/((a+bp+cq)))+(1/(((a/p)+b+((cq)/p))))     +(1/(((a/q)+((bp)/q)+c)))=  ((Q(a+b+c))/(20))  ⇒  ((1+p+q)/s)=((Q(a+b+c))/(20))  &   ((as^2 )/(pq))+((bs^2 )/q)+((cs^2 )/p)=1  ⇒  s^3 =pq  ⇒   20(1+p+q)=Q(a+b+c)(pq)^(1/3)   (a+b+c)^2 =16−2(ab+bc+ca)  Q=((20(1+p+q))/((pq)^(1/3) (a+b+c)))  Q=((20(1+(y/x)+(z/x)))/((((yz)/x^2 ))^(1/3) (a+b+c)))=((20Q)/((xyz)^(1/3) ))  ⇒  (xyz)^(1/3) =20  by symmetry  a^2 =b^2 =c^2 =((16)/3)  x+y+z=20+20+20  (1/?)=Q=((x+y+z)/(a+b+c))        Q=±((60)/(3((4/( (√3))))))=±5(√3)  ?=(1/Q)=±(1/(5(√3)))

$${z}={qx},\:\:{y}={px} \\ $$$${x}\left({a}+{bp}+{cq}\right)=\mathrm{20} \\ $$$${y}\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)=\mathrm{20} \\ $$$${z}\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right)=\mathrm{20} \\ $$$${ax}+{by}+{cz}=\Sigma\frac{\mathrm{20}{a}}{{a}+{bp}+{cq}}=\mathrm{20} \\ $$$$\Rightarrow\:{a}\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right) \\ $$$$+{b}\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right)\left({a}+{bp}+{cq}\right) \\ $$$$+{c}\left({a}+{bp}+{cq}\right)\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)=\mathrm{1} \\ $$$${let}\:\:\:\:?=\frac{\mathrm{1}}{{Q}} \\ $$$$\Rightarrow\:\:\:{x}+{y}+{z}={Q}\left({a}+{b}+{c}\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\left({a}+{bp}+{cq}\right)}+\frac{\mathrm{1}}{\left(\frac{{a}}{{p}}+{b}+\frac{{cq}}{{p}}\right)} \\ $$$$\:\:\:+\frac{\mathrm{1}}{\left(\frac{{a}}{{q}}+\frac{{bp}}{{q}}+{c}\right)}=\:\:\frac{{Q}\left({a}+{b}+{c}\right)}{\mathrm{20}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}+{p}+{q}}{{s}}=\frac{{Q}\left({a}+{b}+{c}\right)}{\mathrm{20}} \\ $$$$\&\:\:\:\frac{{as}^{\mathrm{2}} }{{pq}}+\frac{{bs}^{\mathrm{2}} }{{q}}+\frac{{cs}^{\mathrm{2}} }{{p}}=\mathrm{1} \\ $$$$\Rightarrow\:\:{s}^{\mathrm{3}} ={pq} \\ $$$$\Rightarrow\:\:\:\mathrm{20}\left(\mathrm{1}+{p}+{q}\right)={Q}\left({a}+{b}+{c}\right)\left({pq}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{16}−\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$${Q}=\frac{\mathrm{20}\left(\mathrm{1}+{p}+{q}\right)}{\left({pq}\right)^{\mathrm{1}/\mathrm{3}} \left({a}+{b}+{c}\right)} \\ $$$${Q}=\frac{\mathrm{20}\left(\mathrm{1}+\frac{{y}}{{x}}+\frac{{z}}{{x}}\right)}{\left(\frac{{yz}}{{x}^{\mathrm{2}} }\right)^{\mathrm{1}/\mathrm{3}} \left({a}+{b}+{c}\right)}=\frac{\mathrm{20}{Q}}{\left({xyz}\right)^{\mathrm{1}/\mathrm{3}} } \\ $$$$\Rightarrow\:\:\left({xyz}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{20} \\ $$$${by}\:{symmetry} \\ $$$${a}^{\mathrm{2}} ={b}^{\mathrm{2}} ={c}^{\mathrm{2}} =\frac{\mathrm{16}}{\mathrm{3}} \\ $$$${x}+{y}+{z}=\mathrm{20}+\mathrm{20}+\mathrm{20} \\ $$$$\frac{\mathrm{1}}{?}={Q}=\frac{{x}+{y}+{z}}{{a}+{b}+{c}} \\ $$$$\:\:\:\:\:\:{Q}=\pm\frac{\mathrm{60}}{\mathrm{3}\left(\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\right)}=\pm\mathrm{5}\sqrt{\mathrm{3}} \\ $$$$?=\frac{\mathrm{1}}{{Q}}=\pm\frac{\mathrm{1}}{\mathrm{5}\sqrt{\mathrm{3}}} \\ $$$$ \\ $$$$ \\ $$

Answered by ajfour last updated on 07/Feb/23

or simply  if  at all  answer is unique  then   we can get the same  as a special  case too   a=b=c  a(x+y+z)=20  a^2 =((16)/3)  a=±(4/( (√3)))  ((a+b+c)/(x+y+z))=((3a)/(20/a))=((3a^2 )/(20))=((16)/(20))=(4/5)

$${or}\:{simply}\:\:{if}\:\:{at}\:{all}\:\:{answer}\:{is}\:{unique} \\ $$$${then}\:\:\:{we}\:{can}\:{get}\:{the}\:{same}\:\:{as}\:{a}\:{special} \\ $$$${case}\:{too}\:\:\:{a}={b}={c} \\ $$$${a}\left({x}+{y}+{z}\right)=\mathrm{20} \\ $$$${a}^{\mathrm{2}} =\frac{\mathrm{16}}{\mathrm{3}} \\ $$$${a}=\pm\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}} \\ $$$$\frac{{a}+{b}+{c}}{{x}+{y}+{z}}=\frac{\mathrm{3}{a}}{\mathrm{20}/{a}}=\frac{\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{20}}=\frac{\mathrm{16}}{\mathrm{20}}=\frac{\mathrm{4}}{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com