Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 186803 by ajfour last updated on 10/Feb/23

Answered by ajfour last updated on 10/Feb/23

Curve is y=x^3 −x  p^3 −p=c  m=3s^2 −1=((p−h)/k)  Tangent:  y−k=(3s^2 −1)(x−h)  Eqation for roots of Intersection   of tangent line with curve:  x^3 −3s^2 x−k+(3s^2 −1)h=0  As  x=s  2s^3 +k=(3s^2 −1)h  2s^3 −3hs^2 +h+k=0  let s=t+q  2(t^3 +3qt^2 +3q^2 t+q^3 )  −3h(t^2 +2qt+q^2 )+h+k=0  ⇒ 2t^3 +3(2q−h)t^2 +6q(q−h)t           +2q^3 −3hq^2 +h+k=0  now if  9(2q−h)^2 =36q(q−h)  ⇒ ((q/h)−(1/2))^2 =((q/h)−(1/2))−(1/2)  ⇒  (q/h)−(1/2)=(1/2)±(√((1/4)−(1/2)))      This must be quadratic  ⇒  h+k=0  h=((2s)/3)  Now since  m=3s^2 −1=((p−h)/k)  ⇒  3s^2 −1=−(p/h)+1  p=(((2s)/3))(2−3s^2 )  p^3 =p+c  Otherwise eq. of normal is  y−k=−(((x−h))/((3s^2 −1)))  y+((2s)/3)+((x−((2s)/3))/(3s^2 −1))=0  (p,0) lies on it; hence  p=((2s)/3)(2−3s^2 )

$${Curve}\:{is}\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${p}^{\mathrm{3}} −{p}={c} \\ $$$${m}=\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}=\frac{{p}−{h}}{{k}} \\ $$$${Tangent}: \\ $$$${y}−{k}=\left(\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}\right)\left({x}−{h}\right) \\ $$$${Eqation}\:{for}\:{roots}\:{of}\:{Intersection} \\ $$$$\:{of}\:{tangent}\:{line}\:{with}\:{curve}: \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{s}^{\mathrm{2}} {x}−{k}+\left(\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}\right){h}=\mathrm{0} \\ $$$${As}\:\:{x}={s} \\ $$$$\mathrm{2}{s}^{\mathrm{3}} +{k}=\left(\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}\right){h} \\ $$$$\mathrm{2}{s}^{\mathrm{3}} −\mathrm{3}{hs}^{\mathrm{2}} +{h}+{k}=\mathrm{0} \\ $$$${let}\:{s}={t}+{q} \\ $$$$\mathrm{2}\left({t}^{\mathrm{3}} +\mathrm{3}{qt}^{\mathrm{2}} +\mathrm{3}{q}^{\mathrm{2}} {t}+{q}^{\mathrm{3}} \right) \\ $$$$−\mathrm{3}{h}\left({t}^{\mathrm{2}} +\mathrm{2}{qt}+{q}^{\mathrm{2}} \right)+{h}+{k}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}{t}^{\mathrm{3}} +\mathrm{3}\left(\mathrm{2}{q}−{h}\right){t}^{\mathrm{2}} +\mathrm{6}{q}\left({q}−{h}\right){t} \\ $$$$\:\:\:\:\:\:\:\:\:+\mathrm{2}{q}^{\mathrm{3}} −\mathrm{3}{hq}^{\mathrm{2}} +{h}+{k}=\mathrm{0} \\ $$$${now}\:{if} \\ $$$$\mathrm{9}\left(\mathrm{2}{q}−{h}\right)^{\mathrm{2}} =\mathrm{36}{q}\left({q}−{h}\right) \\ $$$$\Rightarrow\:\left(\frac{{q}}{{h}}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\left(\frac{{q}}{{h}}−\frac{\mathrm{1}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\frac{{q}}{{h}}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\pm\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$ \\ $$$$ \\ $$$${This}\:{must}\:{be}\:{quadratic} \\ $$$$\Rightarrow\:\:{h}+{k}=\mathrm{0} \\ $$$${h}=\frac{\mathrm{2}{s}}{\mathrm{3}} \\ $$$${Now}\:{since} \\ $$$${m}=\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}=\frac{{p}−{h}}{{k}} \\ $$$$\Rightarrow\:\:\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}=−\frac{{p}}{{h}}+\mathrm{1} \\ $$$${p}=\left(\frac{\mathrm{2}{s}}{\mathrm{3}}\right)\left(\mathrm{2}−\mathrm{3}{s}^{\mathrm{2}} \right) \\ $$$${p}^{\mathrm{3}} ={p}+{c} \\ $$$${Otherwise}\:{eq}.\:{of}\:{normal}\:{is} \\ $$$${y}−{k}=−\frac{\left({x}−{h}\right)}{\left(\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$${y}+\frac{\mathrm{2}{s}}{\mathrm{3}}+\frac{{x}−\frac{\mathrm{2}{s}}{\mathrm{3}}}{\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1}}=\mathrm{0} \\ $$$$\left({p},\mathrm{0}\right)\:{lies}\:{on}\:{it};\:{hence} \\ $$$${p}=\frac{\mathrm{2}{s}}{\mathrm{3}}\left(\mathrm{2}−\mathrm{3}{s}^{\mathrm{2}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com