Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187046 by Humble last updated on 12/Feb/23

find   the general  solution for  the following  system of equations  ((dx_1 /dt))=2x_1 +2x_2   ((dx_2 /dt))=x_1 +3x_2

$${find}\:\:\:{the}\:{general}\:\:{solution}\:{for}\:\:{the}\:{following} \\ $$$${system}\:{of}\:{equations} \\ $$$$\left(\frac{{dx}_{\mathrm{1}} }{{dt}}\right)=\mathrm{2}{x}_{\mathrm{1}} +\mathrm{2}{x}_{\mathrm{2}} \\ $$$$\left(\frac{{dx}_{\mathrm{2}} }{{dt}}\right)={x}_{\mathrm{1}} +\mathrm{3}{x}_{\mathrm{2}} \\ $$$$ \\ $$

Answered by mr W last updated on 13/Feb/23

 [((2−λ),2),(1,(3−λ)) ]=0  (2−λ)(3−λ)−1×2=0  (λ−1)(λ−4)=0  ⇒λ=1, 4   [((2−1),2),(1,(3−1)) ] [(v_1 ),(v_2 ) ]=0  ⇒ [((−2)),(1) ]   [((2−4),2),(1,(3−4)) ] [(v_1 ),(v_2 ) ]=0  ⇒ [(1),(1) ]   [(x_1 ),(x_2 ) ]=C_1 e^t  [((−2)),(1) ]+C_2 e^(4t)  [(1),(1) ]  or  x_1 =−2C_1 e^t +C_2 e^(4t)   x_2 =C_1 e^t +C_2 e^(4t)

$$\begin{bmatrix}{\mathrm{2}−\lambda}&{\mathrm{2}}\\{\mathrm{1}}&{\mathrm{3}−\lambda}\end{bmatrix}=\mathrm{0} \\ $$$$\left(\mathrm{2}−\lambda\right)\left(\mathrm{3}−\lambda\right)−\mathrm{1}×\mathrm{2}=\mathrm{0} \\ $$$$\left(\lambda−\mathrm{1}\right)\left(\lambda−\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=\mathrm{1},\:\mathrm{4} \\ $$$$\begin{bmatrix}{\mathrm{2}−\mathrm{1}}&{\mathrm{2}}\\{\mathrm{1}}&{\mathrm{3}−\mathrm{1}}\end{bmatrix}\begin{bmatrix}{{v}_{\mathrm{1}} }\\{{v}_{\mathrm{2}} }\end{bmatrix}=\mathrm{0} \\ $$$$\Rightarrow\begin{bmatrix}{−\mathrm{2}}\\{\mathrm{1}}\end{bmatrix} \\ $$$$\begin{bmatrix}{\mathrm{2}−\mathrm{4}}&{\mathrm{2}}\\{\mathrm{1}}&{\mathrm{3}−\mathrm{4}}\end{bmatrix}\begin{bmatrix}{{v}_{\mathrm{1}} }\\{{v}_{\mathrm{2}} }\end{bmatrix}=\mathrm{0} \\ $$$$\Rightarrow\begin{bmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{bmatrix} \\ $$$$\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\end{bmatrix}={C}_{\mathrm{1}} {e}^{{t}} \begin{bmatrix}{−\mathrm{2}}\\{\mathrm{1}}\end{bmatrix}+{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \begin{bmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{bmatrix} \\ $$$${or} \\ $$$${x}_{\mathrm{1}} =−\mathrm{2}{C}_{\mathrm{1}} {e}^{{t}} +{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$${x}_{\mathrm{2}} ={C}_{\mathrm{1}} {e}^{{t}} +{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$

Commented by Humble last updated on 13/Feb/23

Much  thanks   sir

$${Much}\:\:{thanks}\:\:\:{sir} \\ $$

Commented by Humble last updated on 13/Feb/23

Commented by mr W last updated on 13/Feb/23

are you sure?  is 1×(−2)+2×1=0 correct ?  (what i did)  or  is 1×(−(1/2))+2×1=0 correct?  (what you corrected)

$${are}\:{you}\:{sure}? \\ $$$${is}\:\mathrm{1}×\left(−\mathrm{2}\right)+\mathrm{2}×\mathrm{1}=\mathrm{0}\:{correct}\:? \\ $$$$\left({what}\:{i}\:{did}\right) \\ $$$${or} \\ $$$${is}\:\mathrm{1}×\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{2}×\mathrm{1}=\mathrm{0}\:{correct}? \\ $$$$\left({what}\:{you}\:{corrected}\right) \\ $$

Commented by Humble last updated on 13/Feb/23

sir, the eigen vector v_1    i think the error is   determinant (((2−1               2)),((1                  3−1))) => determinant (((1          2)),((1          2)))    v_1  =>1c_1 +2c_2  ==>  2c_2  =−1c_(1  )   c_2 =((−1)/2)c_1   for c is arbitraly constant  v_1  ==> c_2 =((−1)/2)  1c_1  + 2c_2  ===> 1c_1  = −2c_2   c_1 =−2(((−1)/2))=1   determinant ((1),((−(1/2))))=v_1  or [2      −1]=v_1

$${sir},\:{the}\:{eigen}\:{vector}\:{v}_{\mathrm{1}} \: \\ $$$${i}\:{think}\:{the}\:{error}\:{is} \\ $$$$\begin{vmatrix}{\mathrm{2}−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}−\mathrm{1}}\end{vmatrix}\:=>\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{vmatrix} \\ $$$$ \\ $$$${v}_{\mathrm{1}} \:=>\mathrm{1}{c}_{\mathrm{1}} +\mathrm{2}{c}_{\mathrm{2}} \:==>\:\:\mathrm{2}{c}_{\mathrm{2}} \:=−\mathrm{1}{c}_{\mathrm{1}\:\:} \:\:{c}_{\mathrm{2}} =\frac{−\mathrm{1}}{\mathrm{2}}{c}_{\mathrm{1}} \\ $$$${for}\:{c}\:{is}\:{arbitraly}\:{constant} \\ $$$${v}_{\mathrm{1}} \:==>\:{c}_{\mathrm{2}} =\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{1}{c}_{\mathrm{1}} \:+\:\mathrm{2}{c}_{\mathrm{2}} \:===>\:\mathrm{1}{c}_{\mathrm{1}} \:=\:−\mathrm{2}{c}_{\mathrm{2}} \:\:{c}_{\mathrm{1}} =−\mathrm{2}\left(\frac{−\mathrm{1}}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$\begin{vmatrix}{\mathrm{1}}\\{−\frac{\mathrm{1}}{\mathrm{2}}}\end{vmatrix}={v}_{\mathrm{1}} \:{or}\:\left[\mathrm{2}\:\:\:\:\:\:−\mathrm{1}\right]={v}_{\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 13/Feb/23

my error or your error?  we want to find v_1  and v_2  such that

$${my}\:{error}\:{or}\:{your}\:{error}? \\ $$$${we}\:{want}\:{to}\:{find}\:{v}_{\mathrm{1}} \:{and}\:{v}_{\mathrm{2}} \:{such}\:{that} \\ $$

Commented by mr W last updated on 13/Feb/23

Commented by mr W last updated on 13/Feb/23

i said v_1 =−2, v_1 =1.  but you corrected to  v_1 =−(1/2), v_2 =1

$${i}\:{said}\:{v}_{\mathrm{1}} =−\mathrm{2},\:{v}_{\mathrm{1}} =\mathrm{1}. \\ $$$${but}\:{you}\:{corrected}\:{to} \\ $$$${v}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}},\:{v}_{\mathrm{2}} =\mathrm{1} \\ $$

Commented by mr W last updated on 13/Feb/23

you can also check my final solution:

$${you}\:{can}\:{also}\:{check}\:{my}\:{final}\:{solution}: \\ $$

Commented by mr W last updated on 13/Feb/23

x_1 =−2C_1 e^t +C_2 e^(4t)   x_2 =C_1 e^t +C_2 e^(4t)   2x_1 +2x_2 =−4C_1 e^t +2C_2 e^(4t) +2C_1 e^t +2C_2 e^(4t)                     =−2C_1 e^t +4C_2 e^(4t)   x_1 +3x_2 =−2C_1 e^t +C_2 e^(4t) +3C_1 e^t +3C_2 e^(4t)                  =C_1 e^t +4C_2 e^(4t)   (dx_1 /dt)=−2C_1 e^t +4C_2 e^(4t) =2x_1 +2x_2  ✓  (dx_2 /dt)=C_1 e^t +4C_2 e^(4t) =x_1 +3x_2  ✓

$${x}_{\mathrm{1}} =−\mathrm{2}{C}_{\mathrm{1}} {e}^{{t}} +{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$${x}_{\mathrm{2}} ={C}_{\mathrm{1}} {e}^{{t}} +{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$$\mathrm{2}{x}_{\mathrm{1}} +\mathrm{2}{x}_{\mathrm{2}} =−\mathrm{4}{C}_{\mathrm{1}} {e}^{{t}} +\mathrm{2}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} +\mathrm{2}{C}_{\mathrm{1}} {e}^{{t}} +\mathrm{2}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{2}{C}_{\mathrm{1}} {e}^{{t}} +\mathrm{4}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$${x}_{\mathrm{1}} +\mathrm{3}{x}_{\mathrm{2}} =−\mathrm{2}{C}_{\mathrm{1}} {e}^{{t}} +{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} +\mathrm{3}{C}_{\mathrm{1}} {e}^{{t}} +\mathrm{3}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={C}_{\mathrm{1}} {e}^{{t}} +\mathrm{4}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} \\ $$$$\frac{{dx}_{\mathrm{1}} }{{dt}}=−\mathrm{2}{C}_{\mathrm{1}} {e}^{{t}} +\mathrm{4}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} =\mathrm{2}{x}_{\mathrm{1}} +\mathrm{2}{x}_{\mathrm{2}} \:\checkmark \\ $$$$\frac{{dx}_{\mathrm{2}} }{{dt}}={C}_{\mathrm{1}} {e}^{{t}} +\mathrm{4}{C}_{\mathrm{2}} {e}^{\mathrm{4}{t}} ={x}_{\mathrm{1}} +\mathrm{3}{x}_{\mathrm{2}} \:\checkmark \\ $$

Commented by Humble last updated on 14/Feb/23

all clear, my apology. sir

$${all}\:{clear},\:{my}\:{apology}.\:{sir} \\ $$

Commented by mr W last updated on 14/Feb/23

alright sir!

$${alright}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com