Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187453 by norboyev last updated on 17/Feb/23

∫_0 ^1 (√(sinx))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{sin}{x}}\mathrm{d}{x}=? \\ $$

Answered by Frix last updated on 17/Feb/23

∫(√(sin x)) dx= [Elliptic Integral]  =−2E ((π/4)−(x/2)∣2) +C  ∫_0 ^1 (√(sin x)) dx≈.642977634658

$$\int\sqrt{\mathrm{sin}\:{x}}\:{dx}=\:\left[\mathrm{Elliptic}\:\mathrm{Integral}\right] \\ $$$$=−\mathrm{2}{E}\:\left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\mid\mathrm{2}\right)\:+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{sin}\:{x}}\:{dx}\approx.\mathrm{642977634658} \\ $$

Answered by CElcedricjunior last updated on 21/Feb/23

∫_0 ^1 (√(sinx))dx=k  posons sinx=t^2 =>dx=((2t)/( (√(1−t^2 ))))dt  qd: { ((x−>0 )),((x−>1)) :}=> { ((t−>0)),((t−>sin(1))) :}  k=∫_0 ^(sin(1)) ((2t^3 )/( (√(1−t^2 ))))dt   { ((u=t^2 )),((v′=(t/( (√(1−t^2 )))))) :}=> { ((u′=2t)),((v=−(√(1−t^2 )))) :}★Moivre  k=−2sin^2 (1)∣cos(1)∣+4∫_0 ^(sin(1)) t(√(1−t^2 ))dt  k=−sin(1)sin(2)+4[−(2/3)(√((1−t^2 )))]_0 ^(sin(1))  ■Cedric junior  k=sin(1)sin(2)−(8/3)cos^(3/2) (1)+(8/3)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\boldsymbol{{sinx}}}\boldsymbol{{dx}}=\boldsymbol{{k}} \\ $$$$\boldsymbol{{posons}}\:\boldsymbol{{sinx}}=\boldsymbol{{t}}^{\mathrm{2}} =>\boldsymbol{{dx}}=\frac{\mathrm{2}\boldsymbol{{t}}}{\:\sqrt{\mathrm{1}−\boldsymbol{{t}}^{\mathrm{2}} }}\boldsymbol{{dt}} \\ $$$$\boldsymbol{{qd}}:\begin{cases}{\boldsymbol{{x}}−>\mathrm{0}\:}\\{\boldsymbol{{x}}−>\mathrm{1}}\end{cases}=>\begin{cases}{\boldsymbol{{t}}−>\mathrm{0}}\\{\boldsymbol{{t}}−>\boldsymbol{{sin}}\left(\mathrm{1}\right)}\end{cases} \\ $$$$\boldsymbol{{k}}=\int_{\mathrm{0}} ^{\boldsymbol{{sin}}\left(\mathrm{1}\right)} \frac{\mathrm{2}\boldsymbol{{t}}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−\boldsymbol{{t}}^{\mathrm{2}} }}\boldsymbol{{dt}} \\ $$$$\begin{cases}{\boldsymbol{{u}}=\boldsymbol{{t}}^{\mathrm{2}} }\\{\boldsymbol{{v}}'=\frac{\boldsymbol{{t}}}{\:\sqrt{\mathrm{1}−\boldsymbol{{t}}^{\mathrm{2}} }}}\end{cases}=>\begin{cases}{\boldsymbol{{u}}'=\mathrm{2}\boldsymbol{{t}}}\\{\boldsymbol{{v}}=−\sqrt{\mathrm{1}−\boldsymbol{{t}}^{\mathrm{2}} }}\end{cases}\bigstar{Moivre} \\ $$$$\boldsymbol{{k}}=−\mathrm{2}\boldsymbol{{si}}\overset{\mathrm{2}} {\boldsymbol{{n}}}\left(\mathrm{1}\right)\mid\boldsymbol{{cos}}\left(\mathrm{1}\right)\mid+\mathrm{4}\int_{\mathrm{0}} ^{\boldsymbol{{sin}}\left(\mathrm{1}\right)} \boldsymbol{{t}}\sqrt{\mathrm{1}−\boldsymbol{{t}}^{\mathrm{2}} }\boldsymbol{{dt}} \\ $$$$\boldsymbol{{k}}=−\boldsymbol{{sin}}\left(\mathrm{1}\right)\boldsymbol{{sin}}\left(\mathrm{2}\right)+\mathrm{4}\left[−\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\left(\mathrm{1}−\boldsymbol{{t}}^{\mathrm{2}} \right)}\right]_{\mathrm{0}} ^{\boldsymbol{{sin}}\left(\mathrm{1}\right)} \:\blacksquare\mathscr{C}{edric}\:{junior} \\ $$$$\boldsymbol{{k}}=\boldsymbol{{sin}}\left(\mathrm{1}\right)\boldsymbol{{sin}}\left(\mathrm{2}\right)−\frac{\mathrm{8}}{\mathrm{3}}\boldsymbol{{co}}\overset{\frac{\mathrm{3}}{\mathrm{2}}} {\boldsymbol{{s}}}\left(\mathrm{1}\right)+\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com