Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 187482 by ajfour last updated on 17/Feb/23

Commented by ajfour last updated on 17/Feb/23

If    cone′s     (R/h)=m,  green ball  radius=a.  Find b the radii of  upper balls (equal), all in contact  the way shown.

$${If}\:\:\:\:{cone}'{s}\:\:\:\:\:\frac{{R}}{{h}}={m},\:\:{green}\:{ball} \\ $$$${radius}={a}.\:\:{Find}\:{b}\:{the}\:{radii}\:{of} \\ $$$${upper}\:{balls}\:\left({equal}\right),\:{all}\:{in}\:{contact} \\ $$$${the}\:{way}\:{shown}. \\ $$

Answered by a.lgnaoui last updated on 18/Feb/23

sin θ=(a/c)     c=OO_1 =((OH)/h)  tan θ=(R/h)=m⇒ c=((am)/( (√(1+m^2 ))))  Cone   sin β= ((R((√3)/2))/(R−rsin α))=cos α  (√(1+m^2 )) =((R(√3))/(2R−2r(m/( (√(1+m^2 ))))))  2R(√(1+m^2  )) −2mr=R(√3)           r=((R(2(√(1+m^2 )) −(√3)))/(2m)) .

$$\mathrm{sin}\:\theta=\frac{{a}}{{c}}\:\:\:\:\:{c}={OO}_{\mathrm{1}} =\frac{{OH}}{{h}} \\ $$$$\mathrm{tan}\:\theta=\frac{{R}}{{h}}={m}\Rightarrow\:{c}=\frac{{am}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }} \\ $$$${Cone}\:\:\:\mathrm{sin}\:\beta=\:\frac{{R}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{{R}−{r}\mathrm{sin}\:\alpha}=\mathrm{cos}\:\alpha \\ $$$$\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }\:=\frac{{R}\sqrt{\mathrm{3}}}{\mathrm{2}{R}−\mathrm{2}{r}\frac{{m}}{\:\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }}} \\ $$$$\mathrm{2}{R}\sqrt{\mathrm{1}+{m}^{\mathrm{2}} \:}\:−\mathrm{2}{mr}={R}\sqrt{\mathrm{3}}\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{{r}}=\frac{\boldsymbol{{R}}\left(\mathrm{2}\sqrt{\mathrm{1}+\boldsymbol{{m}}^{\mathrm{2}} }\:−\sqrt{\mathrm{3}}\right)}{\mathrm{2}\boldsymbol{{m}}}\:. \\ $$

Commented by a.lgnaoui last updated on 18/Feb/23

r=b

$${r}={b} \\ $$

Commented by a.lgnaoui last updated on 18/Feb/23

Answered by mr W last updated on 18/Feb/23

Commented by mr W last updated on 19/Feb/23

tan θ=(R/H)=m  A′B=((2(√3)b)/3)  OA=(a/(sin θ))  AA′=(√((a+b)^2 −(((2(√3)b)/3))^2 ))=(√(a^2 +2ab−(b^2 /3)))  OA′=(√(a^2 +2ab−(b^2 /3)))+(a/(sin θ))  OC=(a/(tan θ))  CC′=(√((a+b)^2 −(b−a)^2 ))=2(√(ab))  OC′=2(√(ab))+(a/(tan θ))  ((√(a^2 +2ab−(b^2 /3)))+(a/(sin θ)))^2 +(((2(√3)b)/3))^2 =(2(√(ab))+(a/(tan θ)))^2 +b^2   (√(a^2 +2ab−(b^2 /3)))=(b−a)sin θ+2(√(ab)) cos θ  b^2 ((4/3)−cos^2  θ)−a^2 cos^2  θ−2ab(2−3cos^2  θ)+2(b−a)(√(ab)) sin 2θ=0  let λ=(b/a)  ⇒(5−3 cos 2θ)λ^2 −6(1−3 cos 2θ)λ+12 sin 2θ (λ−1)(√λ)−3(1+cos 2θ)=0    examples:  θ=30° ⇒(b/a)≈0.8974  θ=sin^(−1) (1/( (√3)))≈35.264° ⇒(b/a)=1  θ=60° ⇒(b/a)≈1.6445

$$\mathrm{tan}\:\theta=\frac{{R}}{{H}}={m} \\ $$$${A}'{B}=\frac{\mathrm{2}\sqrt{\mathrm{3}}{b}}{\mathrm{3}} \\ $$$${OA}=\frac{{a}}{\mathrm{sin}\:\theta} \\ $$$${AA}'=\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}{b}}{\mathrm{3}}\right)^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{ab}−\frac{{b}^{\mathrm{2}} }{\mathrm{3}}} \\ $$$${OA}'=\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{ab}−\frac{{b}^{\mathrm{2}} }{\mathrm{3}}}+\frac{{a}}{\mathrm{sin}\:\theta} \\ $$$${OC}=\frac{{a}}{\mathrm{tan}\:\theta} \\ $$$${CC}'=\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −\left({b}−{a}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{{ab}} \\ $$$${OC}'=\mathrm{2}\sqrt{{ab}}+\frac{{a}}{\mathrm{tan}\:\theta} \\ $$$$\left(\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{ab}−\frac{{b}^{\mathrm{2}} }{\mathrm{3}}}+\frac{{a}}{\mathrm{sin}\:\theta}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}{b}}{\mathrm{3}}\right)^{\mathrm{2}} =\left(\mathrm{2}\sqrt{{ab}}+\frac{{a}}{\mathrm{tan}\:\theta}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{ab}−\frac{{b}^{\mathrm{2}} }{\mathrm{3}}}=\left({b}−{a}\right)\mathrm{sin}\:\theta+\mathrm{2}\sqrt{{ab}}\:\mathrm{cos}\:\theta \\ $$$${b}^{\mathrm{2}} \left(\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)−{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}{ab}\left(\mathrm{2}−\mathrm{3cos}^{\mathrm{2}} \:\theta\right)+\mathrm{2}\left({b}−{a}\right)\sqrt{{ab}}\:\mathrm{sin}\:\mathrm{2}\theta=\mathrm{0} \\ $$$${let}\:\lambda=\frac{{b}}{{a}} \\ $$$$\Rightarrow\left(\mathrm{5}−\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta\right)\lambda^{\mathrm{2}} −\mathrm{6}\left(\mathrm{1}−\mathrm{3}\:\mathrm{cos}\:\mathrm{2}\theta\right)\lambda+\mathrm{12}\:\mathrm{sin}\:\mathrm{2}\theta\:\left(\lambda−\mathrm{1}\right)\sqrt{\lambda}−\mathrm{3}\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right)=\mathrm{0} \\ $$$$ \\ $$$${examples}: \\ $$$$\theta=\mathrm{30}°\:\Rightarrow\frac{{b}}{{a}}\approx\mathrm{0}.\mathrm{8974} \\ $$$$\theta=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\approx\mathrm{35}.\mathrm{264}°\:\Rightarrow\frac{{b}}{{a}}=\mathrm{1} \\ $$$$\theta=\mathrm{60}°\:\Rightarrow\frac{{b}}{{a}}\approx\mathrm{1}.\mathrm{6445} \\ $$

Commented by a.lgnaoui last updated on 18/Feb/23

coupe transversale

$${coupe}\:{transversale} \\ $$

Commented by ajfour last updated on 19/Feb/23

Thanks Sir , correct answers.

Answered by ajfour last updated on 18/Feb/23

Commented by ajfour last updated on 18/Feb/23

See solution also in Q.187535

$${See}\:{solution}\:{also}\:{in}\:{Q}.\mathrm{187535} \\ $$

Commented by a.lgnaoui last updated on 18/Feb/23

Merci pour explication par  graphe.

$${Merci}\:{pour}\:{explication}\:{par} \\ $$$${graphe}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com