Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 187531 by sciencestudentW last updated on 18/Feb/23

∫_0 ^∞ x^2 e^(−x) dx=?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}{x}^{\mathrm{2}} {e}^{−{x}} {dx}=? \\ $$

Answered by a.lgnaoui last updated on 18/Feb/23

posons   t=e^x   x=lnt   dx=(dt/t)  x^2 e^(−x) =(lnt)^2 ×(1/t)=((lnt)/t)×lnt  ∫_0 ^∞ x^2 e^(−x) dx=∫_1 ^∞ [((1/2)lnt)^2 ]′lnt  U=(1/2)[lnt]^2     V=lnt     V^′ =(1/t)  I=(1/2)(lnt)^2 −(1/2)∫((lnt)^2 )/t)dt=(1/2)(lnt)^3 ]_1 ^∞ −J  2I=(1/2)[(lnt)^2 ]_1 ^∞ ⇒ I=+∞

$${posons}\:\:\:{t}={e}^{{x}} \:\:{x}={lnt}\:\:\:{dx}=\frac{{dt}}{{t}} \\ $$$${x}^{\mathrm{2}} {e}^{−{x}} =\left({lnt}\right)^{\mathrm{2}} ×\frac{\mathrm{1}}{{t}}=\frac{{lnt}}{{t}}×{lnt} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} {e}^{−{x}} {dx}=\int_{\mathrm{1}} ^{\infty} \left[\left(\frac{\mathrm{1}}{\mathrm{2}}{lnt}\right)^{\mathrm{2}} \right]'{lnt} \\ $$$${U}=\frac{\mathrm{1}}{\mathrm{2}}\left[{lnt}\right]^{\mathrm{2}} \:\:\:\:{V}={lnt}\:\:\:\:\:{V}^{'} =\frac{\mathrm{1}}{{t}} \\ $$$$\left.{I}=\frac{\mathrm{1}}{\mathrm{2}}\left({lnt}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left.{lnt}\right)^{\mathrm{2}} }{{t}}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left({lnt}\right)^{\mathrm{3}} \right]_{\mathrm{1}} ^{\infty} −{J} \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\left[\left({lnt}\right)^{\mathrm{2}} \right]_{\mathrm{1}} ^{\infty} \Rightarrow\:{I}=+\infty \\ $$

Answered by ARUNG_Brandon_MBU last updated on 18/Feb/23

∫_0 ^∞ x^2 e^(−x) dx=Γ(3)=2!=2

$$\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} {e}^{−{x}} {dx}=\Gamma\left(\mathrm{3}\right)=\mathrm{2}!=\mathrm{2} \\ $$

Answered by ARUNG_Brandon_MBU last updated on 18/Feb/23

I=∫_0 ^∞ x^2 e^(−x) dx   { ((u(x)=x^2 )),((v′(x)=e^(−x) )) :}⇒ { ((u′(x)=2x)),((v(x)=−e^(−x) )) :}  I=[−x^2 e^(−x) ]_0 ^∞ +2∫_0 ^∞ xe^(−x) dx    =2∫_0 ^∞ xe^(−x) dx=2[−xe^(−x) ]_0 ^∞ +2∫_0 ^∞ e^(−x) dx    =2∫_0 ^∞ e^(−x) dx=2[−e^(−x) ]_0 ^∞ =2

$${I}=\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{2}} {e}^{−{x}} {dx} \\ $$$$\begin{cases}{\mathrm{u}\left({x}\right)={x}^{\mathrm{2}} }\\{\mathrm{v}'\left({x}\right)={e}^{−{x}} }\end{cases}\Rightarrow\begin{cases}{\mathrm{u}'\left({x}\right)=\mathrm{2}{x}}\\{\mathrm{v}\left({x}\right)=−{e}^{−{x}} }\end{cases} \\ $$$${I}=\left[−{x}^{\mathrm{2}} {e}^{−{x}} \right]_{\mathrm{0}} ^{\infty} +\mathrm{2}\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}} {dx} \\ $$$$\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}} {dx}=\mathrm{2}\left[−{xe}^{−{x}} \right]_{\mathrm{0}} ^{\infty} +\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {dx} \\ $$$$\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {dx}=\mathrm{2}\left[−{e}^{−{x}} \right]_{\mathrm{0}} ^{\infty} =\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com