Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 189285 by TUN last updated on 14/Mar/23

f(x) is continous function on R  and lim_(x→1) ((f(((x+1)/x))−6)/((((x−1)/x))^2 ))=2  Evalute : lim_(x→1) (((√(f(x)+x))−x)/((x−1)))=¿

$${f}\left({x}\right)\:{is}\:{continous}\:{function}\:{on}\:{R} \\ $$$${and}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{f}\left(\frac{{x}+\mathrm{1}}{{x}}\right)−\mathrm{6}}{\left(\frac{{x}−\mathrm{1}}{{x}}\right)^{\mathrm{2}} }=\mathrm{2} \\ $$$${Evalute}\::\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt{{f}\left({x}\right)+{x}}−{x}}{\left({x}−\mathrm{1}\right)}=¿ \\ $$

Answered by cortano12 last updated on 14/Mar/23

 let ((x+1)/x) =u ; x=(1/(u−1)) ; (((x−1)/x))^2 =(1−(u−1))^2   L= lim_(u→2)  ((f(u)−6)/((2−u)^2 )) = 2    { ((f(2)=6)),((L= lim_(u→2) )) :}(((f ′(u))/(−2(2−u)))) = 2⇒f ′(2)=0     L=lim_(u→2) (((f ′′(u))/2))=2⇒f ′′(2)=4

$$\:\mathrm{let}\:\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}}\:=\mathrm{u}\:;\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{u}−\mathrm{1}}\:;\:\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} =\left(\mathrm{1}−\left(\mathrm{u}−\mathrm{1}\right)\right)^{\mathrm{2}} \\ $$$$\mathrm{L}=\:\underset{\mathrm{u}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{f}\left(\mathrm{u}\right)−\mathrm{6}}{\left(\mathrm{2}−\mathrm{u}\right)^{\mathrm{2}} }\:=\:\mathrm{2} \\ $$$$\:\begin{cases}{\mathrm{f}\left(\mathrm{2}\right)=\mathrm{6}}\\{\mathrm{L}=\:\underset{\mathrm{u}\rightarrow\mathrm{2}} {\mathrm{lim}}}\end{cases}\left(\frac{\mathrm{f}\:'\left(\mathrm{u}\right)}{−\mathrm{2}\left(\mathrm{2}−\mathrm{u}\right)}\right)\:=\:\mathrm{2}\Rightarrow\mathrm{f}\:'\left(\mathrm{2}\right)=\mathrm{0} \\ $$$$\:\:\:\mathrm{L}=\underset{\mathrm{u}\rightarrow\mathrm{2}} {\mathrm{lim}}\left(\frac{\mathrm{f}\:''\left(\mathrm{u}\right)}{\mathrm{2}}\right)=\mathrm{2}\Rightarrow\mathrm{f}\:''\left(\mathrm{2}\right)=\mathrm{4} \\ $$

Answered by cortano12 last updated on 14/Mar/23

K=lim_(x→1)  (((√(f(x)+x))−x)/((x−1))) =   [ (√(f(1)+1))=1⇒f(1)=0 ]   K= lim_(x→1)  ((((f ′(x)+1)/(2(√(f(x)+x)))) −1)/1)  K= ((f ′(1)+1)/(2(√(f(1)+1))))−1=((f ′(1)+1)/2)−1

$$\mathrm{K}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{f}\left(\mathrm{x}\right)+\mathrm{x}}−\mathrm{x}}{\left(\mathrm{x}−\mathrm{1}\right)}\:= \\ $$$$\:\left[\:\sqrt{\mathrm{f}\left(\mathrm{1}\right)+\mathrm{1}}=\mathrm{1}\Rightarrow\mathrm{f}\left(\mathrm{1}\right)=\mathrm{0}\:\right]\: \\ $$$$\mathrm{K}=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\frac{\mathrm{f}\:'\left(\mathrm{x}\right)+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{f}\left(\mathrm{x}\right)+\mathrm{x}}}\:−\mathrm{1}}{\mathrm{1}} \\ $$$$\mathrm{K}=\:\frac{\mathrm{f}\:'\left(\mathrm{1}\right)+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{f}\left(\mathrm{1}\right)+\mathrm{1}}}−\mathrm{1}=\frac{\mathrm{f}\:'\left(\mathrm{1}\right)+\mathrm{1}}{\mathrm{2}}−\mathrm{1} \\ $$

Commented by TUN last updated on 14/Mar/23

f(x) is quadratic function

$${f}\left({x}\right)\:{is}\:{quadratic}\:{function} \\ $$

Commented by mr W last updated on 14/Mar/23

no! there are infinite possibilities.  f(x)=(x−2)^2 g(x)+6   g(x) can be any function with g(2)=2.

$${no}!\:{there}\:{are}\:{infinite}\:{possibilities}. \\ $$$${f}\left({x}\right)=\left({x}−\mathrm{2}\right)^{\mathrm{2}} {g}\left({x}\right)+\mathrm{6}\: \\ $$$${g}\left({x}\right)\:{can}\:{be}\:{any}\:{function}\:{with}\:{g}\left(\mathrm{2}\right)=\mathrm{2}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com