Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 190987 by Rupesh123 last updated on 15/Apr/23

Answered by 07049753053 last updated on 16/Apr/23

let x^2 =u dx=(du/(2(√u)))  (1/2)∫_0 ^∞ ((e^(−u) sin(u))/(u(√u)))du=(1/2)∫_0 ^∞ u^(−(3/2)) e^(−u) sin(u)du  by euler′s formula  sin(u)=Im(e^(iu) )  (1/2)Im∫_0 ^∞ u^(−(3/2)) e^(−u(i−1)) du  let u(i−1)=k u=(k/(i−1)) du=(dk/(i−1))  (1/2)Im((1/((i−1)^(−(1/2)) ))∫_0 ^∞ k^(−(3/2)) e^(−k) dk)  (1/2)Im((1/((i−1)^(−(1/2)) ))𝚪(−(1/2)))=(1/2)Im((√((1−i))))𝚪(−(1/2))  (1/2)[(√𝛑)(√((1/2)−(1/( (√2)))))]=((√𝛑)/2)(√(((√2)−2)/(2(√2))))≈0.806625...  Small Laplace

$$\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\boldsymbol{\mathrm{u}}\:\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\mathrm{du}}}{\mathrm{2}\sqrt{\boldsymbol{\mathrm{u}}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{u}}} \boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{u}}\right)}{\boldsymbol{\mathrm{u}}\sqrt{\boldsymbol{\mathrm{u}}}}\boldsymbol{\mathrm{du}}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{u}}^{−\frac{\mathrm{3}}{\mathrm{2}}} \boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{u}}} \boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{u}}\right)\boldsymbol{\mathrm{du}} \\ $$$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{euler}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{formula}} \\ $$$$\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{u}}\right)=\boldsymbol{\mathcal{I}{m}}\left(\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{iu}}} \right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathcal{I}{m}}\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{u}}^{−\frac{\mathrm{3}}{\mathrm{2}}} \boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{u}}\left(\boldsymbol{\mathrm{i}}−\mathrm{1}\right)} \boldsymbol{\mathrm{du}} \\ $$$$\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{u}}\left(\boldsymbol{\mathrm{i}}−\mathrm{1}\right)=\boldsymbol{\mathrm{k}}\:\boldsymbol{\mathrm{u}}=\frac{\boldsymbol{\mathrm{k}}}{\boldsymbol{\mathrm{i}}−\mathrm{1}}\:\boldsymbol{\mathrm{du}}=\frac{\boldsymbol{\mathrm{dk}}}{\boldsymbol{\mathrm{i}}−\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathcal{I}{m}}\left(\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{i}}−\mathrm{1}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} }\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{k}}^{−\frac{\mathrm{3}}{\mathrm{2}}} \boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{k}}} \boldsymbol{\mathrm{dk}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathcal{I}\mathrm{m}}\left(\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{i}}−\mathrm{1}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} }\boldsymbol{\Gamma}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)\right)=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathcal{I}\mathrm{m}}\left(\sqrt{\left(\mathrm{1}−{i}\right)}\right)\boldsymbol{\Gamma}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\boldsymbol{\pi}}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\right]=\frac{\sqrt{\boldsymbol{\pi}}}{\mathrm{2}}\sqrt{\frac{\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}}\approx\mathrm{0}.\mathrm{806625}... \\ $$$$\boldsymbol{\mathcal{S}{mall}}\:\boldsymbol{{Laplace}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com