Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 192115 by mnjuly1970 last updated on 08/May/23

   Ω = lim_( x→0)  (  (( cot^( −1)  ((1/x) ))/( x)) )^(1/x^( 2) ) = ?

$$ \\ $$$$\:\Omega\:=\:\mathrm{lim}_{\:{x}\rightarrow\mathrm{0}} \:\left(\:\:\frac{\:\mathrm{cot}^{\:−\mathrm{1}} \:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\:{x}}\:\right)^{\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }} =\:?\:\:\:\:\:\: \\ $$$$\:\: \\ $$$$ \\ $$

Answered by mehdee42 last updated on 08/May/23

tip 1: cot^(−1) (1/x)=tan^(−1) x     tip2 : x→0⇒tan^(−1) x∼x  & x→0 ;  tanx−x ∼ −(1/3)x^3     tip3 : if  ; f→1  , g→∞ ⇒limf^g =e^(lim (f−1)g)   SO  Ω=lim_(x→0)  (((tan^(−1) x)/x))^(1/x^2 ) =e^(lim_(x→0)  ( ((tan^(−1) x)/x)−1)(1/x^2 ))   =e^(lim_(x→0)  ( ((tan^(−1) x−1)/x))(1/x^2 )) =e^(lim_(x→0) (((−x^3 )/(3x^3 ))))   =(1/( (e)^(1/3) )) ✓

$${tip}\:\mathrm{1}:\:{cot}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}={tan}^{−\mathrm{1}} {x}\:\:\: \\ $$$${tip}\mathrm{2}\::\:{x}\rightarrow\mathrm{0}\Rightarrow{tan}^{−\mathrm{1}} {x}\sim{x}\:\:\&\:{x}\rightarrow\mathrm{0}\:;\:\:{tanx}−{x}\:\sim\:−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} \:\: \\ $$$${tip}\mathrm{3}\::\:{if}\:\:;\:{f}\rightarrow\mathrm{1}\:\:,\:{g}\rightarrow\infty\:\Rightarrow{limf}^{{g}} ={e}^{{lim}\:\left({f}−\mathrm{1}\right){g}} \\ $$$${SO} \\ $$$$\Omega={lim}_{{x}\rightarrow\mathrm{0}} \:\left(\frac{{tan}^{−\mathrm{1}} {x}}{{x}}\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} ={e}^{{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\:\frac{{tan}^{−\mathrm{1}} {x}}{{x}}−\mathrm{1}\right)\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$={e}^{{lim}_{{x}\rightarrow\mathrm{0}} \:\left(\:\frac{{tan}^{−\mathrm{1}} {x}−\mathrm{1}}{{x}}\right)\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} ={e}^{{lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{−{x}^{\mathrm{3}} }{\mathrm{3}{x}^{\mathrm{3}} }\right)} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{e}}}\:\checkmark \\ $$

Commented by senestro last updated on 08/May/23

awsome.

$${awsome}. \\ $$

Commented by mnjuly1970 last updated on 08/May/23

  so nice sir   ⋛

$$\:\:{so}\:{nice}\:{sir}\:\:\:\underline{\underbrace{\lesseqgtr}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com