Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 19271 by Joel577 last updated on 08/Aug/17

lim_(x→π)  (2 − cos^2  x)^((2(√(2(1 + cos x))))/((x − π)^3 ))

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\mathrm{2}\:−\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)^{\frac{\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{cos}\:{x}\right)}}{\left({x}\:−\:\pi\right)^{\mathrm{3}} }} \\ $$

Answered by ajfour last updated on 09/Aug/17

=lim_(x→π) {[1+sin^2 (π−x)]^(1/(sin^2 (π−x))) }^(4cos  ((x/2))×((sin^2 (π−x))/((π−x)^2 ))×((−1)/((π−x))))   =e^(lim_(x→π) ∣4sin   ((π/2)−(x/2))∣×((sin^2 (π−x))/((π−x)^2 ))×((−1)/((π−x))))   =e^(−lim_(x→π)  ((∣4sin ((π/2)−(x/2))∣)/(2((π/2)−(x/2)))))   R.H.L. =e^2   ;   L.H.L. =e^(−2)  =(1/e^2 ) .   so the limit dont exist at x=π .

$$=\underset{{x}\rightarrow\pi} {\mathrm{lim}}\left\{\left[\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)\right]^{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)}} \right\}^{\mathrm{4cos}\:\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)×\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)}{\left(\pi−\mathrm{x}\right)^{\mathrm{2}} }×\frac{−\mathrm{1}}{\left(\pi−\mathrm{x}\right)}} \\ $$$$=\mathrm{e}^{\underset{{x}\rightarrow\pi} {\mathrm{lim}}\mid\mathrm{4sin}\:\:\:\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{x}}{\mathrm{2}}\right)\mid×\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)}{\left(\pi−\mathrm{x}\right)^{\mathrm{2}} }×\frac{−\mathrm{1}}{\left(\pi−\mathrm{x}\right)}} \\ $$$$=\mathrm{e}^{−\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mid\mathrm{4sin}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{x}}{\mathrm{2}}\right)\mid}{\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{x}}{\mathrm{2}}\right)}} \\ $$$$\mathrm{R}.\mathrm{H}.\mathrm{L}.\:=\boldsymbol{\mathrm{e}}^{\mathrm{2}} \:\:;\:\:\:\mathrm{L}.\mathrm{H}.\mathrm{L}.\:=\boldsymbol{\mathrm{e}}^{−\mathrm{2}} \:=\frac{\mathrm{1}}{\boldsymbol{\mathrm{e}}^{\mathrm{2}} }\:. \\ $$$$\:\mathrm{so}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{dont}\:\mathrm{exist}\:\mathrm{at}\:\mathrm{x}=\pi\:. \\ $$

Commented by Joel577 last updated on 09/Aug/17

Can u explain with more detail Sir?  I dont understand from the second row

$$\mathrm{Can}\:\mathrm{u}\:\mathrm{explain}\:\mathrm{with}\:\mathrm{more}\:\mathrm{detail}\:\mathrm{Sir}? \\ $$$$\mathrm{I}\:\mathrm{dont}\:\mathrm{understand}\:\mathrm{from}\:\mathrm{the}\:\mathrm{second}\:\mathrm{row}\: \\ $$

Commented by ajfour last updated on 09/Aug/17

since lim_(x→0) (1+x)^(1/x) =e  here we have lim_(x→π) [1+sin^2 (π−x)]^(1/(sin^2 (π−x))) =e  ..

$$\mathrm{since}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{1}/\mathrm{x}} =\mathrm{e} \\ $$$$\mathrm{here}\:\mathrm{we}\:\mathrm{have}\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\left[\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)\right]^{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \left(\pi−\mathrm{x}\right)}} =\mathrm{e} \\ $$$$.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com